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Objectives

After completing this chapter, you should be able to:

• Detect bad relational database designs (that con-

tain redundancies).

• Determine functional dependencies.

• Check whether a given table is in BCNF for given

functional dependencies.

• Detect redundancy and normalization problems al-

ready during the conceptional design in the ER-

model.
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Overview

1. Introduction (Anomalies)
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Introduction (1)

• Relational database design theory is based mainly

on a class of constraints called “Functional Depen-

dencies” (FDs). FDs are a generalization of keys.

• This theory defines when a relation is in a certain

normal form (e.g. Third Normal Form, 3NF) for a

given set of FDs.

• It is usually bad if a schema contains relations that

violate the conditions of a normal form.

However, there are exceptions and tradeoffs.
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Introduction (2)

• If a normal form is violated, data is stored redun-

dantly, and information about different concepts is

intermixed. E.g. consider the following table:

COURSES

CRN TITLE INAME PHONE

22268 DB Brass 9404

42232 DS Brass 9404

31822 IS Spring 9429

• The phone number of “Brass” is stored two times.

In general, the phone number of an instructor will

be stored once for every course he/she teaches.
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Introduction (3)

• Of course, it is no problem if a column contains the

same value two times (e.g. consider a Y/N column).

• But in this case, the following holds: If two rows

have the same value in the column INAME, they must

have the same value in the column PHONE.

• This is an example of a functional dependency:

INAME → PHONE.

• Because of this rule, one of the two PHONE entries

for Brass is redundant.
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Introduction (4)

• Table entries are redundant if they can be recon-

structed from other table entries and additional in-

formation (like the FD in this case).
E.g. if an employee table contains the date of birth, the additional
column AGE would be redundant: The age can be computed from the
date of birth (and the knowledge about today’s date).

• Redundant information in database schemas is bad:

� Storage space is wasted.

� If the information is updated, all redundant co-

pies must be updated. If one is not careful, the

copies become inconsistent (Update Anomaly).
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Introduction (5)

• Redundant information is sometimes convenient for

easy query formulation (e.g. a precomputed join).

• But in relational databases, one can define virtual

tables (views) that are computed by a query.

• Since the contents of a view is not explicitly stored

and not directly updated, redundant information is

no problem for views.

The entire view is redundant, since it is computed from the stored
relations.
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Introduction (6)

• Sometimes, redundant information might also be

needed for efficient query evaluation.

• There is a tradeoff: Storing redundant information

is bad, but slow query evaluation is also bad.

• But adding redundant information should only be

discussed during physical design. There must be

really good and quantifiable reasons.

• Avoid storing redundant data whenever you can!

Many cases of redundant information can be detected by checking for
normal forms.
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Introduction (7)

• In the example, the information about the two con-

cepts “Course” and “Instructor” are intermixed in

one table. This is bad:

� The phone number of a new faculty member can

be stored in the table only together with a course

(Insertion Anomaly).
Null values also do not help since the course reference number is
the key of the table, and the key must be not null.

� When the last course of a faculty member is

deleted, his/her phone number is lost (Deletion

Anomaly).
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Introduction (8)

• If one does a good Entity-Relationship design and

translates it into the relational model, all normal

forms will be automatically satisfied.

• However, normal forms are generally accepted. If

one should have to argue about design alternatives

in a team, saying that one schema violates a normal

form is a strong and formal reason against it.

• Normal forms give another possibility for checking

a proposed schema. However, it is much better to

detect the problems already on the ER-level.
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Introduction (9)

• Today, Third Normal Form (3NF) is considered

part of general database education.

• Boyce-Codd Normal Form (BCNF) is slightly stron-

ger, easier to define, and better matches intuition.

• Intuitively, BCNF means that all FDs are already

enforced by keys (so one can forget about FDs after

the normalization check).

• Only BCNF is defined here.

• If a table is in BCNF, it is automatically in 3NF.
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Functional Dependencies (1)

• Functional dependencies (FDs) are generalizations

of keys.

• A functional dependency specifies that an attribu-

te (or attribute combination) uniquely determines

another attribute (or other attributes).

• Functional dependencies are written in the form

A1, . . . , An → B1, . . . , Bm.

• This means that whenever two rows have the same

values in the attributes A1, . . . , An, then they must

also agree in the attributes B1, . . . , Bm.
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Functional Dependencies (2)

• As noted above, the FD “INAME → PHONE” is satis-

fied in the following example:

COURSES

CRN TITLE INAME PHONE

22268 DB Brass 9404

42232 DS Brass 9404

31822 IS Spring 9429

• If two rows agree in the instructor name, they must

have the same phone number.

If two rows do not have the same value for INAME, the condition is
void for them.
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Functional Dependencies (3)

• A key uniquely determines every attribute, i.e. the

FDs “CRN→TITLE”, “CRN→INAME”, “CRN→PHONE” are

trivially satisfied:

� There are no two distinct rows that have the

same value for a key (CRN in this case).

� Therefore, whenever rows t and u agree in the

key (CRN), they must actually be the same row,

and therefore agree in all other attributes, too.

• Instead of the three FDs above, one can also write

the single FD “CRN → TITLE, INAME, PHONE”.
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Functional Dependencies (4)

• In the example, the FD “INAME → TITLE” is not sa-

tisfied: There are two rows with the same INAME,

but different values for TITLE.

• In the example, the FD “TITLE → CRN” is satisfied.

• However, like keys, FDs are constraints: They must

hold in all possible database states, not only in a

single example state.

Of course, if an FD does not hold in a valid example state, it is clear
that it cannot hold in general. E.g. “INAME → TITLE” does not have
to be considered any further.
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Functional Dependencies (5)

• Therefore, it is a database design task to determine

which FDs should hold. This cannot be decided

automatically, and the FDs are needed as input for

the normalization check.

• In the example, the DB designer must find out whe-

ther it can ever happen that two courses are offered

with the same title (e.g. two sessions of a course

that is overbooked).

• If this can happen, the FD “TITLE → CRN” does not

hold in general.
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Functional Dependencies (6)

• Sequence and multiplicity of attributes in an FD

are unimportant, since both sides are formally sets

of attributes: {A1, . . . , An} → {B1, . . . , Bm}.

• In discussing FDs, the focus is on a single relati-

on R. All attributes Ai, Bi are from this relation.

• The FD A1, . . . , An → B1, . . . , Bm is equivalent to

the m FDs:
A1, . . . , An → B1

... ... ...
A1, . . . , An → Bm.
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FDs vs. Keys

• FDs are a generalization of keys: A1, . . . , An is a

key of R(A1, . . . , An, B1, . . . , Bm) if and only if the

FD “A1, . . . , An → B1, . . . , Bm” holds.

Under the assumption that there are no duplicate rows. Two distinct
rows that are identical in every attribute would not violate the FD,
but they would violate the key. In theory, this cannot happen, because
relations are sets of tuples, and tuples are defined only by their attri-
bute values. In practice, SQL permits two identical rows in a table as
long as one did not define a key (therefore, always define a key).

• Given the FDs for a relation, it is possible to com-

pute a key by finding a set of attributes A1, . . . , An

that functionally determines the other attributes.
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Implication of FDs (1)

• CRN→PHONE is nothing new when one knows already

CRN→INAME and INAME→PHONE.
Whenever A → B and B → C are satisfied, A → C automatically holds.

• PHONE→PHONE holds, but is not interesting.
FDs of the form A → A always hold (for every DB state).

• A set of FDs {α1 → β1, . . . ,αn → βn} implies an

FD α → β if and only if every DB state which satis-

fies the αi → βi for i = 1, . . . , n also satisfies α → β.
α and β stand here for sets of attributes/columns. Note that this
notion of implication is not specific to FDs, the same definition is
used for general constraints.
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Implication of FDs (2)

• One is normally not interested in all FDs which

hold, but only in a representative set that implies

all other FDs.

• Implied dependencies can be computed by applying

the Armstrong Axioms:

� If β ⊆ α, then α → β trivially holds (Reflexivity).

� If α → β, then α ∪ γ → β ∪ γ (Augmentation).

� If α → β and β → γ, then α → γ (Transitivity).
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Implication of FDs (3)

• However, a simpler way to check whether α → β

is implied by given FDs is to compute first the co-

ver α+ of α and then to check whether β ⊆ α+.

• The cover α+ of a set of attributes α is the set of

all attributes B that are uniquely determined by the

attributes α (with respect to given FDs).

α+ := {B | The given FDs imply α → B}.
The cover α+ depends on the given FDs, although the set of FDs is
not explicitly shown in the usual notation α+. If necessary, write α+

F .

• A set of FDs F implies α → β if and only if β ⊆ α+
F .

Stefan Brass: Database Systems Universität Halle, 2003



10. Introduction to Relational Normal Forms 10-24

Implication of FDs (4)

• The cover is computed as follows:

Input: α (Set of attributes)
α1 → β1, . . . , αn → βn (Set of FDs)

Output: α+ (Set of attributes, Cover of α)

Method: x := α;
while x did change do

for each given FD αi → βi do
if αi ⊆ x then

x := x ∪ βi;
output x;
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Implication of FDs (5)

• Consider the following FDs:
ISBN → TITLE, PUBLISHER

ISBN, NO → AUTHOR

PUBLISHER → PUB_URL

• Suppose we want to compute {ISBN}+.

• We start with x = {ISBN}.
x is the set of attributes for which we know that there can be only a
single value. We start with the assumption that for the given attributes
in α, i.e. ISBN, there is only one value. Then the cover α+ is the set
of attributes for which we can derive under this assumption that their
value is uniquely determined (using the given FDs).
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Implication of FDs (6)

• The first of the given FDs, namely

ISBN → TITLE, PUBLISHER

has a left hand side (ISBN) that is contained in the

current set x (actually, x = {ISBN}).
I.e. there is a unique value for these attributes. Then the FD means
that also for the attributes on the right hand side have a unique value.

• Therefore, we can extend x by the attributes on the

right hand side of this FD, i.e. TITLE, and PUBLISHER:

x = {ISBN, TITLE, PUBLISHER}.
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Implication of FDs (7)

• Now the third of the FDs, namely

PUBLISHER → PUB_URL

is applicable: Its left hand side is contained in x.

• Therefore, we can add the right hand side of this

FD to x and get

x = {ISBN, TITLE, PUBLISHER, PUB_URL}.

• The last FD, namely

ISBN, NO → AUTHOR

is still not applicable, because NO is missing in x.
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Implication of FDs (8)

• After checking again that there is no way to ex-

tend the set x any further with the given FDs, the

algorithm terminates and prints

{ISBN}+ = {ISBN, TITLE, PUBLISHER, PUB_URL}.

• From this, we can conclude that the given FDs

imply e.g. ISBN → PUB_URL.

• In the same way, one can compute e.g. the cover

of {ISBN, NO}. It is the entire set of attributes.

This means that {ISBN, NO} is a key of the relation, see next slide.
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Exercise

• The following relation is used for storing orders:

ORDER(ORD_NO, DATE, CUST_NO, PROD_NO, QUANTITY)

• Please list FDs which hold for this relation:

One order can be about multiple products.

• Do these FDs imply the following FD?

ORD_NO, PROD_NO → DATE

• Determine a key of the relation ORDER.
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Overview
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2. Functional Dependencies

3. BCNF

'

&

$

%

Stefan Brass: Database Systems Universität Halle, 2003



10. Introduction to Relational Normal Forms 10-31

Motivation (1)

• Consider again the example:

COURSES

CRN TITLE INAME PHONE

22268 DB Brass 9404

42232 DS Brass 9404

31822 IS Spring 9429

• As noted above, the FD INAME→PHONE leads to pro-

blems, one of which is the redundant storage of

certain facts (e.g. the phone number of “Brass”).
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Motivation (2)

• Actually, any FD A1, . . . , An → B1, . . . , Bm will cause

redundant storage unless A1, . . . , An is a key, so that

each combination of attribute values for A1, . . . , An

can occur only once.

Trivial constraints must be excluded here, i.e. at least one of the Bi

should not appear among the Aj.

• In general, whenever one stores redundant data,

one needs a constraint that ensures that the diffe-

rent copies of the same information remain consi-

stent (i.e. do not contradict each other).
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Motivation (3)

• In the cases of redundant data considered here, the

constraints are precisely the FDs, e.g. INAME→PHONE.

• But FDs are not one of the standard constraints of

the relational model. They cannot be specified in

the CREATE TABLE statement of current DBMSs.

• Only the special case of keys is supported.

• Thus: Avoid (proper) FDs by transforming them in-

to key constraints. This is what normalization does.
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Motivation (4)

• The problem in the example is also caused by the

fact that information about different concepts is

stored together (faculty members and courses).

• Formally, this follows also from “INAME→PHONE”:

� INAME is like a key for only part of the attributes.

� It identifies faculty members, and PHONE depends

only on the faculty member, not on the course.

• Again: The left hand side of an FD should be a key.

It is not a problem if a relation has two keys: Then there are only two
ways to identify the same concept.
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Boyce-Codd Normal Form

• A Relation R is in BCNF if and only if all its FDs

are already implied by key constraints.

Thus, a relation in BCNF does not require FD constraints, only key
constraints.

• I.e. for every FD “A1, . . . , An → B1, . . . , Bm” one

of the following conditions must hold:

� The FD is trivial, i.e. {B1, . . . , Bm}⊆{A1, . . . , An}.
� The FD follows from a key, because {A1, . . . , An}

or some subset of it is already a key.

It can be any key, not necessarily the primary key.
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Examples (1)

• COURSES(CRN, TITLE, INAME, PHONE) with the FDs

� CRN→TITLE,INAME,PHONE

� INAME→PHONE

is not in BCNF because the FD “INAME → PHONE”

is not implied by a key:

� “INAME” is not a key of the entire relation.

� The FD is not trivial.

• However, without the attribute PHONE (and its FD),

the relation is in BCNF:

� CRN → TITLE, INAME corresponds to the key.
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Examples (2)

• Suppose that each course meets only once per week

and that there are no cross-listed courses. Then

CLASS(CRN, TITLE, DAY, TIME, ROOM)

satisfies the following FDs (plus implied ones):

� CRN → TITLE, DAY, TIME, ROOM

� DAY, TIME, ROOM → CRN

• The keys are CRN and DAY, TIME, ROOM.

• Both FDs have a key on the left hand side, so the

relation is in BCNF.
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Examples (3)

• Suppose that PRODUCT(NO, NAME, PRICE) has these

FDs:
(1) NO → NAME (3) PRICE, NAME → NAME

(2) NO → PRICE (4) NO, PRICE → NAME

• This relation is in BCNF:

� The first two FDs show that NO is a key. Since

their left hand side is a key, they are no problem.

� The third FD is trivial and can be ignored.

� The fourth FD has a superset of the key on the

left hand side, which is also no problem.
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Exercises

• Is RESULTS(STUD_ID, EX_NO, POINTS, MAX_POINTS)

with the following FDs in BCNF?
(1) STUD_ID, EX_NO → POINTS

(2) EX_NO → MAX_POINTS

First determine all minimal keys (there is only one).

• Is the relation

ORDER(ORD_NO, DATE, CUST_NO, PROD_NO, QUANTITY),

for which you determined FDs above, in BCNF?
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Splitting Relations

• A table which is not in BCNF can be split into two

tables (“decomposition”), e.g. split COURSES into

COURSES_NEW(CRN, TITLE, INAME→INSTRUCTORS)

INSTRUCTORS(INAME, PHONE)

• General case: If A1, . . . , An → B1, . . . , Bm violates

BCNF, create a relation S(A1, . . . , An, B1, . . . , Bm)

and remove B1, . . . , Bm from the original relation.

B1, . . . , Bm should be all attributes that are functionally determined by
A1, . . . , An. No Bi should appear among the Aj. A1, . . . , An become a
foreign key in the original relation. In unusual cases (multiple violati-
ons), it is necessary to repeat the splitting step with one or both of
the resulting relations. Then also implied FDs must be considered.
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