
9. Introduction to the Entity-Relationship Model 9-1

Part 9: Introduction to the
Entity-Relationship Model

References:
• Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999.

Chapter 3, “Data Modeling Using the Entity-Relationship Model”

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed.,
Ch. 2, “Entity-Relationship Model”.

• Ramakrishnan: Database Management Systems, Mc-Graw Hill, 1998,
Ch. 14, “Conceptual Design and the ER-Model”

• Kemper/Eickler: Datenbanksysteme (in German), Ch. 2, Oldenbourg, 1997.

• Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.

• Teorey: Database Modeling and Design, Third Edition, 1999.

• Barker: CASE*Method, Entity Relationship Modelling, Oracle/Addison-Wesley, 1990.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-2

Objectives

After completing this chapter, you should be able to:

• explain the three phases of database design.

Why multiple phases are useful?

• evaluate the significance of the ER-model for DB

design.

• enumerate the basic constructs of the ER-model.

• develop ER-diagrams (schemas in the ER-model)

for a given (small) application.

• compare and evaluate given ER-diagrams.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-3

Overview

1. Database Design Overview

'

&

$

%
2. Basic ER-Constructs

3. Kinds of Relationships (Cardinalities)

4. Keys, Weak Entities

5. Translation into the Relational Model

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-4

Database Design (1)

• Overall goal: Develop programs to support given

real world tasks.

• These programs need persistently stored data.

• Methods from software engineering should be used

(or specialized for such data-intensive programs).

• Database design is the process of developing a da-

tabase schema for a given application.

It is a subtask of the overall software engineering effort.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-5

Database Design (2)

• The specification of programs and data is intertwi-

ned:

� The schema should contain the data needed by

the programs.

� Programs are often easy to specify once one has

specified the data to be manipulated by them.

• Data is an independent resource:

� Often later additional programs will be develo-

ped based on the collected data.

� Also, ad-hoc queries may be used.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-6

Database Design (3)

• During DB design, a formal model of some aspects

of the real world (“Miniworld”, “Domain of Dis-

course”) must be built.

Questions about the real world should be answered from the database.
A list of such questions can be an important input for database design.

• The real world is the measure of correctness for the

schema: DB states should correspond to states of

the real world.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-7

Database Design (4)

• Database design is not easy:

� The designer must learn about the application

domain.

� Exceptions: The real world is very flexible.

� Size: Database schemas can be very big.

• As any complicated task, DB design is done in se-

veral steps.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-8

Database Design (5)

• There are usually three schema design phases:

� Conceptual Database Design produces the initi-

al model of the miniworld in a conceptual data

model (like the Entity-Relationship-Model).

� Logical Database Design consists of transfor-

ming this schema into the data model supported

by the DBMS to be used (the relational model).

� Physical Database Design aims at improving the

performance of the final system.

Indexes and storage parameters are selected during this phase.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-9

Database Design (6)

Why multiple design phases?

• Allows problems to be separated and attacked one

after the other.

• E.g., during conceptual design, there is no need to

worry about performance aspects or limitations of

a specific DBMS.
Focus is on producing a correct model of the real world.

• DBMS features do not influence conceptual design,

and only partially influence the logical design.
Thus, the conceptual design is not invalidated, if a different DBMS
is later used.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-10

Example (1)

ER-Schema in Graphical Notation:

Instructor

�
�

�
�Name

�
�
� �
�

�
�Phone

@
@

@

�
���

����

HH
HHH

HHH

teaches ��
���

���

H
HHH

HHHH

Course

�
�

�
�No

�
�
� �
�

�
�Title

@
@

@

• This miniworld contains instructors and courses.

• Instructors teach courses.

• Instructors have a name and a phone number.

• Courses have a number (like “20727”) and a title.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-11

Example (2)

Possible State:

Instructor

~XXXXXXXXy
Name

’Brass’
��������9

Phone’49404’

teaches

����������������

PPPPPPPPPPPPPPPP

Course

~

~

������:
No ’20727’

XXXXXXz
Title

’DB’

������:
No ’42232’

XXXXXXz
Title

’DS’

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-12

The ER-Model (1)

• The Entity-Relationship-Model is called a “seman-

tic data model”, because it more closely resembles

the real world than e.g. the relational model.

� In the ER-model, persons are modelled. In the

relational model, only their names/numbers.

� In the ER-model, there is a distinction between

entities and relationships. In the relational mo-

del, both are represented by relations.

This expressiveness is not needed to satisfy the information re-
quirements of the applications. But it makes the correspondence
between the schema and the real world clearer (like a comment).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-13

The ER-Model (2)

• Proposed by Peter Pin-Shan Chen (1976).

• There is a useful graphical notation which helps to

establish a better overview; to “see” the structure

of the data.

It also helps to communicate with the future users.

• There is no commercial entity-relationship DBMS.

A schema transformation into another data model is unavoidable.
However, object-oriented DBMS are quite similar.

• Many variations and extensions of the ER-Model

have been proposed.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-14

The ER-Model (3)

• There are specialized graphical editors and other

design tools.

E.g. Oracle Designer is a CASE tool for DB-applications, and one
component is the ER Diagrammer. (CASE: Computer-Aided Software
Engineering.)

• The ER-model is a standard tool for conceptual DB

design. However, recently, object-oriented methods

are also used.

Many people believe that UML (unified modelling language) is “the
future”. All design formalisms are based on the ER-model. Knowledge
of the ER-model is an important foundation for any DB design.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-15

Overview

1. Database Design Overview

2. Basic ER-Constructs

'

&

$

%
3. Kinds of Relationships (Cardinalities)

4. Keys, Weak Entities

5. Translation into the Relational Model

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-16

Basic ER-Model Concepts (1)

Entities:

• Objects in the miniworld about which information

has to be stored. E.g. persons, books, courses.
It does not matter whether entities have a physical existence (and
can be touched) or only a conceptual existence.

• At each instant, the miniworld that has to be mo-

delled can contain only a finite number of entities.
E.g. “all numbers” (infinitely many) cannot be entities.

• It must be possible to distinguish entities from each

other, i.e. they must have some identity.
So ants in a heap do not qualify as entities.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-17

Basic ER-Model Concepts (2)

Data Type Elements:

• Values from some possibly infinite set, which can

be stored and printed.

• E.g. strings, numbers, dates, lengths, pictures.

• A person cannot be stored (an entity), but his/her

name can be stored (a data type element).

• Most current DBMS have some predefined set of

data types which they support.

• It is possible to use non-standard types in ER-

schemas (complicates the later logical design).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-18

Basic ER-Model Concepts (3)

Attribute:

• A property or characteristic of an entity (or a rela-

tionship).

• E.g. the title of this course is “Database Systems”.

• The value of an attribute is an element of a data

type like string, integer, date: It has a printable

representation.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-19

Basic ER-Model Concepts (4)

Relationship:

• Relation between pairs of entities (“binary relati-

onship”).

Some authors allow relationships involving more than two entities. My
experience shows that this often leads to errors.

• E.g. I (a person) teach “Database Systems” (a

course).

• The word “Relationship” is also used as an abbre-

viation for “Relationship-Type” (see below).

It should be clear from the context what is meant.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-20

Basic ER-Model Concepts (5)

Entity-Type:

• Set of similar entities (with respect to the informa-

tion which has to be stored about them), i.e. enti-

ties which have the same attributes.

• E.g. all faculty members of this university.

Relationship-Type:

• Set of similar relationships.

• E.g. “X teaches course Y”.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-21

ER-Diagrams (1)

• Entity-Type E:

E

• Attribute A of Entity-Type E:

E
�
�

�
�A

• Relationship R between Entity-Types E1 and E2:

E1
����

HHHH
R HHHH

����

E2

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-22

ER-Diagrams (2)

• Relationships can also exist between entities of the

same type (“recursive relationships”):

Course

requires knowledge of
������������

PPPPPPPPPPPPPrecondition
PPPPPPPPPPPP

������������

is precondition for

• In this case, “role names” must be attached to the

connecting edges.

Roles may be indicated in this way for any relationship.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-23

ER-Diagrams (3)

• Relationships can have attributes, too:

Student ��
���

���

H
HHHH

HHH

solved �
���

����

HH
HHH

HHH

�
�

�
�Points

Exercise

• This means that a number of points is stored for

every pair of student X and exercise Y such that X

submitted a solution to Y.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-24

Graphical Syntax (1)

• An ER-Diagram contains

� boxes,

� diamonds,

� ovals,

plus interconnecting lines.

• Boxes, diamonds, and ovals are each labelled by a

string.

The string is written into the construct.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-25

Graphical Syntax (2)

• Interconnecting lines are only allowed between

� a box and a diamond,

� a box and an oval, and

� a diamond and a oval.

• In addition, these constraints must be satisfied:

� A diamond must have exactly two connecting

lines to boxes. There may be any number to

ovals.

� An oval must have exactly one connecting line.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-26

Graphical Syntax (3)

• The names of boxes must be unique in the entire

diagram.
I.e. you cannot have two boxes with the same label.

• The names of ovals must only be unique for a single

box or diamond.
I.e. you cannot have two ovals with the same name which are linked
to the same box (or the same diamond).

• Diamonds must be uniquely identified by name and

their connections to boxes.
I.e. you cannot have two diamonds which are linked to the same two
boxes and have the same name.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-27

Exercise

Which errors does this diagram contain?

E
�
�
�
�A

F

�
�
�
�A

�
�

�

@
@

@

R @
@

@

�
�

�
�
�
�
�B

��
���

����
�

�
�

@
@

@

S @
@

@

�
�

�

HHH
HHH

HHH

E

�
�
�
�A

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-28

Exercise

Define an ER-schema (diagram) for the following ap-

plication:

• Information about researchers in the database field

must be stored.

• For each researcher, his/her last name, first name,

email address, and homepage (URL) is needed.

• Also his/her current affiliation (employer) is needed

(assume that all researchers work at universities).

• For each university, its name, URL, and country

should be stored.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-29

ER-Schemas (1)

• Usually, not all schema information is denoted in

an ER-diagram:

� The attributes have a data type, which must be

specified in a complete ER-schema.

� Sometimes an ER-diagram becomes clearer if

the attributes are not shown.

It is not uncommon that an entity-type has 50 attributes.

� Comments/Explanations are useful, but do not

look good in ER-diagrams.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-30

ER-Schemas (2)

• There should exist a “real schema” (e.g. in textual

form or in a database). The ER-diagrams are then

only excerpts used for illustration purposes.

However, there is no agreement for a textual syntax for writing down
complete schemas, whereas there is some agreement on ER-diagrams.

• The important thing to learn is the graphical syntax

(and the fact that it might not show everything).

• Modern database design tools solve the problem:

E.g. clicking on an entity-type in the diagram shows

further information in dialog boxes.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-31

ER-Schemas: Semantics (1)

A DB state I interprets the symbols in the schema by

defining

• a finite set I(E) for every entity-type E,

• a mapping I(A): I(E) → val(D) for every attribu-

te A of an entity-type E, where D is the data-type

of A and val(D) is the domain (value set) of D,

• a relation I(R) ⊆ I(E1) × I(E2) for every relation-

ship R between entity types E1 and E2,

• a mapping I(A): I(R) → val(D) for every attribu-

te A of a relationship R (D is the data type of A).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-32

ER-Schemas: Semantics (2)

Example State:

• I(Instructor) = {sb, ms}

• I(Name) = f1, where

f1(sb) = ’Brass’, f1(ms) = ’Spring’.

• I(Phone) = f2, where

f2(sb) = 49404, f2(ms) = 49429.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-33

ER-Schemas: Semantics (3)

• I(Course) = {db, ds, dp}

• I(No) = g1, where

g1(db) = 20727, g1(ds) = 42232, g1(dp) = 40492.

• I(Title) = g2, where

g2(db) = ’Database Management’,

g2(ds) = ’Data Structures’,

g2(dp) = ’Document Processing’.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-34

ER-Schemas: Semantics (4)

• I(teaches) = {(sb, db), (sb, ds), (ms, ds), (ms, dp)}.

• The cartesian product × constructs the set of all

pairs, e.g. IR× IR is the set of all (X, Y)-pairs where

X and Y are real numbers.

• Here: (X, Y)-pairs with instructor X and course Y :

6

Instructors

sb

ms

-Courses
db ds dp

v v
v v

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-35

ER-Schemas: Semantics (5)

Consequences for Attributes:

• There are extensions, but the basic notion of a at-

tribute requires that

� Attribute values are defined.
No unknown values.

� Attributes are single valued.
No multiple/set values.

� Attribute values are atomic.
No record structures (unless data types have already this struc-
ture, e.g. date values). But the basic ER-model treats all attribute
values as atomic, i.e. it adds no record structures besides those
already given by the data types.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-36

ER-Schemas: Semantics (6)

Consequence for Relationships:

• A relationship is interpreted by a set of entity-pairs.

• A set either contains an element or does not con-

tain it. It cannot be contained “two times”.

• Therefore, a relationship either exists between two

entities or it does not exist between these entities.

There cannot be multiple connections between the same two entities
with respect to the same relationship type.

• So if the relationship has an attribute, its value

must be unique for any pair of entities.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-37

ER-Schemas: Semantics (7)

Example/Exercise:

• Consider this schema:

Cinema ��
����

H
HHH

HH

shows �
���

��

HH
HHHH

�
�

�
�Time

Film

• Suppose a cinema shows the same film at 3pm and

at 6pm.

• Can this information be stored in the given schema?

Yes No

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-38

Optional Attributes

• One can also permit attributes that are only parti-

ally defined (optional attributes, can be null).

• Such attributes can be marked by a small circle on

the line between the entity type (or relationship)

and the attribute:

E f ��
�
�A

• The semantics of this attribute in a state I is a

partial function from I(E) (set of all E-entities) to

val(D) where D is the data type of A.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-39

Overview

1. Database Design Overview

2. Basic ER-Constructs

3. Kinds of Relationships (Cardinalities)

'

&

$

%
4. Keys, Weak Entities

5. Translation into the Relational Model

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-40

Cardinalities (1)

General Relationship:

E1

z
z
z
z

R

((((((((((((((((((

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

E2

z
z
z
z
z
z

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-41

Cardinalities (2)

• In general, there is no restriction on how often an

entity participates in a relationship.

• An entity can be connected to one entity of the

other type, to more than one, or it can have no

partner at all.

• However, often we have some knowledge of how

many E2-entities an E1-entity can be related.

Man ������������

PPPPPPPPPPPP

is married to ������������

PPPPPPPPPPPP

Woman

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-42

Cardinalities (3)

• In the (min,max)-Notation, one specifies an interval

for the number of outgoing edges of every entity:

E1
(m1, n1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(m2, n2)
E2

• I.e. an entity of type E1 may be related to bet-

ween m1 and n1 entities of type E2.

• m2 is the minimal number of E1 entities, to which

an E2 entity must be related, and n2 is the maximal

number to which it may be related.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-43

Cardinalities (4)

Formal Semantics:

• For every DB state I and every entity e1 ∈ I(E1):

m1 ≤ | {e2 ∈ I(E2) | (e1, e2) ∈ I(R)} | ≤ n1.

• For every DB state I and every entity e2 ∈ I(E2):

m2 ≤ | {e1 ∈ I(E1) | (e1, e2) ∈ I(R)} | ≤ n2.

Extension:

• “∗” can be used as maximum if there is no limit.

• (0, ∗) means no restriction at all (min: 0, max: ∞).

This cardinality is the default (if no cardinality is specified).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-44

Cardinalities (5)

Example:

• A man can be married to at most one woman and

vice versa:

Man
(0,1)

������������

PPPPPPPPPPPP

is married to ������������

PPPPPPPPPPPP

(0,1)
Woman

• An airport lies in exactly one country, a country can

have many airports (it might be possible that there

are countries without airport):

Airport
(1,1)

�
���

��

HH
HHHH

lies in ��
����

H
HHH

HH

(0, ∗)
Country

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-45

Cardinalities (6)

Exercise: Define Cardinalities.

• Besides normal customers, the database contains

also “customers” who have not yet ordered any-

thing, but only got the product catalog.

Order ���
���

HHH
HHH

from ���
���

HHH
HHH

Customer

• An order can be about several products:

Order ��
����

H
HHH

HH

for �
���

��

HH
HHHH

Product

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-46

Selecting Cardinalities (1)

• Draw an example of a valid database state: Some

entities of type E1, some of type E2, and edges

between related entities.

• Now count the outgoing edges for all entities of

type E1. (Later do the same with E2.)

• E.g. in the relationship depicted on slide 9-40, there

are E1-entities with 0, 1, and 3 outgoing edges.

• This means that the strongest possible cardinality

restriction is (0,3). This is satisfied by the example

state.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-47

Selecting Cardinalities (2)

• Knowledge of the application might lead to wea-

ker restrictions (i.e. larger intervals), e.g. (0,5) or

even (0, ∗).
(a,b) is weaker than (c,d) if a ≤ c and d ≤ b.

• In general, the cardinalities (0,1), (1,1), and (0, ∗)
are especially common and easy to enforce in a

relational schema.

E.g. instead of (0,30), it might be easier to choose (0, ∗). However,
if 30 is a hard limit (i.e. the database state would be invalid if it is
violated), one should specify the cardinality (0,30) and enforce it via
constraints, triggers, or checks in application programs.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-48

Common Cases (1)

• Normally, the minimum cardinality will be 0 or 1,

and the maximum cardinality will be 1 or ∗.
So only (0,1), (1,1), (0, ∗), (1, ∗) are common in practice.

• In order to understand a relationship, one must

know the cardinality specifications on both sides.

• The maximum cardinalities are used to distinguish

between “many to many”, “one to many”/“many

to one”, and “one to one” relationships.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-49

Common Cases (2)

“Many to Many” Relationships:

• Both maximum cardinalities are “∗”:
The minimum cardinalities can be 0 or 1, see participation below.

Student
(0, ∗)

��
����

H
HHH

HH

takes �
���

��

HH
HHHH

(0, ∗)
Course

• One student can be enrolled in many courses, and

one course can have many students.

• This is the most general case.

• When translated into the relational model, “many

to many” relationships will need an extra table.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-50

Common Cases (3)

“One to Many” Relationships:

• Maximum cardinality 1 on the “many” side and ∗
on the “one” side.

Instructor
(0, ∗)

���
����

HHH
HHHH

HH
HHH

HH

���
����teaches

(0,1)
Course

• E.g. one instructor teaches many courses, but each

course has at most one instructor (“one instructor,

many courses”).

So this is “one to many” from instructor to course.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-51

Common Cases (4)

“One to Many” Relationships, Continued:

• Note that 1/one and ∗/many are inversed!

� “Instructor” is the “many” side, but has maxi-

mum cardinality 1.

� “Course” is the “one” side, but has maximum

cardinality ∗.

• “One to many” relationships do not need an extra

table when translated into the relational model.

They are probably the most common kind of relationship.

• “Many to one”: symmetric (e.g. “taught by”).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-52

Common Cases (5)

“One to One” Relationships:

• Maximum cardinality 1 on both sides:

Man
(0,1)

������������

PPPPPPPPPPPP

is married to ������������

PPPPPPPPPPPP

(0,1)
Woman

• A man can be married to at most one woman,

a woman can be married to at most one man.

Or: “Is head of” between employee and department: Every depart-
ment has exactly one head (total participation), every employee can
lead at most one department (normal employees lead no department:
partial participation).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-53

Common Cases (6)

Participation:

• The minimum cardinalities define whether the par-

ticipation of entities in the relationship is

� total (mandatory): Every entity must participate

in the relationship.

� partial (optional): Some entities participate in

the relationship, others do not.

• Minimum cardinalities are not important for the

classification of a relationship as “many to many”,

“one to many”, or “one to one”.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-54

Common Cases (7)

• In the following example,

� the participation of “Course” is mandatory (eve-

ry course must have an instructor),
This might be too restrictive in practice. It will hold when the
term starts, but might not hold during planning.

� the participation of instructor is optional (in-

structors can be on sabbatical).
I.e. there can be faculty members that do not teach courses in
the current term.

Instructor
(0, ∗)

���
����

HHH
HHHH

HHH
HHHH

���
����teaches

(1,1)
Course

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-55

Alternative Notations (1)

• There are many variants of the ER-Notation. Car-

dinalities are one point in which they differ quite

significantly.

• E.g. one can use only “many to many” (N:M), “one

to many” (1:N), and “one to one” (1:1).

Instructor
1

�
���

���

HH
HHH

HH

HH
HHH

HH

���
����teaches

N
Course

• Participation is often not specified.

Sometimes a double line is used to indicate mandatory participation.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-56

Alternative Notations (2)

• Oracle Designer uses the “crowsfoot” notation:

INSTRUCTOR

'

&

$

%
teaches

�
��

HHHtaught by
COURSE

'

&

$

%
• The “crowsfoot” indicates the “many” side.

• A dashed line indicates optional participation, a so-

lid line mandatory participation.

• Relationships have two names.

One in each direction (“role names”).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-57

Overview

1. Database Design Overview

2. Basic ER-Constructs

3. Kinds of Relationships (Cardinalities)

4. Keys, Weak Entities

'

&

$

%
5. Translation into the Relational Model

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-58

Keys (1)

• A key of an entity-type E is an attribute which

uniquely identifies the entities of this type.

• There may never be two different entities which

have the same value for the key attribute.

• For example, the social security number is a key

for persons: No two different persons can have the

same SSN.

I have heard that there are very rare cases where two persons have
the same SSN. If this should be true, the SSN is no key.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-59

Keys (2)

• It is possible to declare the combination of two or

more attributes as a key: Then it is only forbidden

that two entities agree in all these attributes.

Entities must be distinguishable by the value of at least one of the
key attributes.

• E.g. using first name and last name together as

key for faculty members, it is legal to have two

professors with the same last name if their first

names are different.

It is also possible to have two faculty members with the same first
name and different last names.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-60

Keys (3)

Graphical Syntax:

• Keys are marked in ER-diagrams by underlining the

attributes which form a key:

Faculty Member
�

�
�

�

#
"

!First Name

#
"

!Last Name

@
@

@
@

#
"

!Phone

• Only entity types can have key attributes.
Keys cannot be declared for relationships (but cardinality specificati-
ons are something similar to keys for relationships).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-61

Keys (4)

Multiple Keys:

• An entity type can have more than one key

(e.g. if also the SSN is stored).

• The graphical syntax allows only specification of a

single key for each entity type.

If also the SSN is underlined, this means that the three attributes
First Name, Last Name, SSN together form a key.

• Select one key as the “primary key”.

Such a unique “primary key” is needed for translation into the relatio-
nal model. Select a key which consists only of a single, short attribute
and does not change over time (if available).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-62

Keys (5)

Importance of Keys:

• The ER-model does not require declaring a key

for each entity-type (since entities have an “object

identity”).

• However, translating an ER-schema into the rela-

tional model requires a key for every entity type.

One extension to the basic ER-model are “weak entity types” which
are identified in part by a relationship.

• If there is no natural key, identifying numbers can

be added (e.g. “order number”, “course number”).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-63

Weak Entities (1)

• An entity may describe a kind of “detail” that can-

not exist without a “master” or “owner” entity.

• Then there is a relationship with a (1,1) cardinality

pointing to the owner.

• In addition the key of the owner entity is inherited

and becomes part of the key of the detail entity:

Invoice
(Master)

�
�

�
�Inv No

�
�
� �
�

�
�Date

@
@

@

(1, ∗)
�

�
��

@
@

@@

has �
�

��

@
@

@@ (1,1) Position
(Detail)

�
�

�
�Inv No

�
�
� �
�

�
�Pos

@
@

@

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-64

Weak Entities (2)

• Without a specific construct for this situation, the

following constraint would be required:

� If two entities are connected via “has”,

� then their attribute “Inv No” has the same value.

E.g. invoice 12 cannot have position 2 in invoice 36 as detail.

• Such constraints occur when an entity does not

have a key by itself, but is only unique in the context

of some other entity.

I.e. it must “borrow” a key attribute of a related entity.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-65

Weak Entities (3)

• In such cases there are always composed keys:

� A classroom is identified by a building and a

room number.

� A subexercise is identified by the exercise number

(e.g. 1) and a letter (e.g. a).

� A web page is identified by a web server and a

path on that server.

• There is also an existence dependency: If the buil-

ding is pulled down, the rooms in it automatically

disappear.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-66

Weak Entities (4)

• Weak entities were introduced for this situation.

• They are marked by using double lines for their box,

the connecting line, and the relationship diamond:

Invoice

�
�

�
�Inv No

�
�
� �
�

�
�Date

@
@

@

(1, ∗)
�

�
�

�

@
@

@
@

�
�

��

@
@

@@

has�
�

��

@
@

@@

�
�

�
�

@
@

@
@

(1,1)
Position

�
�

�
�Pos

• Only the extension to the borrowed key is shown.

Since it is only a partial key, it is dashed underlined.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-67

Weak Entities (5)

• So the real key of the weak entity consists of the key

attribute of the “owner” entity type (automatical-

ly inherited, not explicitly shown) plus the dashed-

underlined partial key.

• Another way to look at this is that here the re-

lationship contributes to the identification of the

entity, whereas usually only attributes are used for

this purpose (in a key).

The double line can be understood as an “underlined line”.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-68

Weak Entities (6)

• The cardinality (1,1) is implied by the weak entity

construct. It does not have to be specified explicitly.
Other relationships cannot be used: There would be no unique owner
entity from which the key value can be inherited.

• The (1,1) cardinality does not automatically mean

“weak entity”. The entity can still have a key of its

own:

Invoice

�
�

�
�Inv No

�
�
� �
�

�
�Date

@
@

@

(1,1)
�

�
��

@
@

@@

for �
�

��

@
@

@@ (0, ∗)
Customer

�
�

�
�Cust No

�
�
� �
�

�
�Name

@
@

@

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-69

Weak Entities (7)

• A weak entity is needed only when the key of one

entity contains the key of a related entity.

A weak entity must add further key attributes to the key of its owner.
Otherwise use a specialization (→ below).

• Sometimes the master/owner entity is called “pa-

rent entity”, and the dependent weak entity is cal-

led “child entity”.

• Entities with their own key (non-weak entities) are

called regular/strong entities.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-70

Weak Entities (8)

• Weak entities are normal entities except that their

key is constructed in a special way.

• Thus, weak entities can have normal relationships

besides the one via which the key is inherited:

Invoice �
�

��

@
@

@@

�
�

�

@
@

@

has�
�

�

@
@

@

�
�

��

@
@

@@

Position �
�

��

@
@

@@

for �
�

��

@
@

@@

Product

• Weak entities can themselves be owner entities for

other weak entities.
There can be an entire hierarchy of parent-child relationships (e.g.
“grandchildren”). But cycles are forbidden.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-71

Weak Entities (9)

Exercise:

• Model a set of online quizzes (multiple-choice tests

e.g. available on a course webpage).

• Each quiz is identified by a title, each question wi-

thin a quiz by a number, and each answer to a given

question by a letter.

For each question and answer the text must be stored, and answers
must be classified into correct and incorrect ones.

• What is the complete key of each of the three entity

types?

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-72

Association Entities (1)

• It is somtimes necessary to turn a relationship into

an entity, e.g. because:

� Ternary relationships are excluded in this course.

� Many CASE-tools do not support relationship-

attributes.

� Some style guides suggest to replace many-to-

many relationships in this way by entities.

� A relationship between a relationship and some

entity type might be needed.

� There is a multiple-valued relationship attribute.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-73

Association Entities (2)

• The relationship is then turned into a weak entity. It

inherits the keys of the entity types that participate

in the original relationship.

• Weak entities can have multiple parents/owners:

Cinema

�
�

�
�Name

�
�

�
��

@
@

@
@@

�
�

�
�

@
@

@
@

does�
�

�
�

@
@

@
@

�
�

�
��

@
@

@
@@

Showing
�
�

�
�Time

�
�

�
��

@
@

@
@@

�
�

�
�

@
@

@
@

of �
�

�
�

@
@

@
@

�
�

�
��

@
@

@
@@

Film

�
�

�
�Title

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-74

Association Entities (3)

• In the above example, the real key of the weak

entity “Showing” consists of

� “Name” (inherited from “Cinema”),

� “Title” (inherited from “Film”), and

� “Time”.

• Weak entities types with several parents/owners are

sometimes called “association entities”.

If two parents have key attributes with the same name, (at least) one
must be implicitly renamed.

• However, “weak entity” is equally ok.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-75

Association Entities (4)

• Relationship:

Student

�
�
�
�ID

(0,∗)
���

���

H
HHH

HH

solved �
���

��

HHH
HHH

�
�

�
�Points

(0,∗)
Exercise

�
�
�
�No

• Association Entity (completely equivalent):

Student

�
�
�
�ID

(0,∗)
�

�
�
�

@
@

@
@

�
�

�

@
@

@

has�
�

�

@
@

@

�
�

�
�

@
@

@
@

Solution
�
�

�
�Points

�
�

�
�

@
@

@
@

�
�

�

@
@

@

for �
�

�

@
@

@

�
�

�
�

@
@

@
@

(0,∗)
Exercise

�
�
�
�No

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-76

Overview

1. Database Design Overview

2. Basic ER-Constructs

3. Kinds of Relationships (Cardinalities)

4. Keys, Weak Entities

5. Translation into the Relational Model

'

&

$

%

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-77

Example

Customer
�

�
�

�
�

�
�CustNo�

�
�
�Name

@
@

@

f �
�

�
�Phone(0, ∗)

HH
HHHH

��
���� places

H
HHH

HH

�
���

��

(1,1)

Order

�
�

�
�OrdNo

�
�
� �
�

�
�Date

@
@

@

(0, ∗)
���

���

HHH
HHH

for ���
���

HHH
HHH

�
�

�
�Quantity

(0, ∗)
Product

�
�

�
�ProdNo

�
�
� �
�

�
�Price

@
@

@

�
�

�
�Description

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-78

Step 1: Entities (1)

• First create a table for each entity. The name of

this table is the name of the entity type.

Alternatively, the plural form can be used.

• The columns of this table are the attributes of the

entity type.

Optional attributes translate into columns allowing null values.

• The primary key of the table is the primary key of

the entity type.

If the entity type has no key, add an artificial key.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-79

Step 1: Entities (2)

Customers

CustNo Name Phone
10 Jones 624-9404
11 Smith

Orders

OrdNo Date
200 2/15/00
201 2/16/00

Products

ProdNo Description Price
1 Apple 0.50
2 Kiwi 0.25
3 Orange 0.60

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-80

Step 2: One-To-Many Rel. (1)

• If a relationship has the maximum cardinality 1 on

one side, it is one-to-many. E.g. “places” is one-

to-many from “Customer” to “Order”.

If it has maximum cardinality 1 on both sides, it is actually one-to-one
(see below).

• In this case you add the key of the “one” side (Cu-

stomer) as a column to the “many” side (Order).

• This column will be a foreign key referencing the

row which corresponds to the related entity.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-81

Step 2: One-To-Many Rel. (2)

• Result in the example:

Orders(OrdNo, Date, CustNo→Customers)

Orders

OrdNo Date CustNo
200 2/15/00 11
201 2/16/00 11

Customers

CustNo Name Phone
10 Jones 624-9404
11 Smith

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-82

Step 2: One-To-Many Rel. (3)

• If the minimum cardinality is 1 (as in this example),

null values are not allowed for the new foreign key

column.

• If the minimum cardinality should be 0, null values

must be allowed for the foreign key column.

It is null for entities not participating in the relationship.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-83

Step 2: One-To-Many Rel. (4)

• The relationship name can be used in the column

name, e.g.

Orders(OrdNo, Date, placed_by→Customers)

• This excludes natural joins, but it is matter of style.

• Of course, all columns in the table must have un-

ique names. If the added foreign key has the same

name as an existing column, one or both must be

renamed.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-84

Step2: Relationship Attributes

• Relationships can have attributes, e.g.:

Student

�
�
��

�
�
�Stud ID

@
@

@

. . .

(0, ∗)
���

���
��

HHH
HHH

HH

borrowed ���
���

��

HHH
HHH

HH

(0,1)

�
�

�
�Date

Book

�
�

�
�Book ID

�
�
�

@
@

@

. . .

• Such attributes are stored together with the pointer

to the related entity:

Books(Book ID, ..., Stud IDo→Students, Dateo)

“Stud ID” and “Date” can be null, since not every book is borrowed,
but they can either be both null or both not null (→ CHECK-constraint).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-85

Step 2: A Variant

• One-to-Many Relationships with cardinality (0,1)

can be translated into a table of their own:

borrowed by(Book ID→Books, Stud ID→Students,

Date)

• The key values of the related entities are stored,

plus attribute values of the relationship.

• The key attributes of the side with the (0,1) car-

dinality become the key of this relation.

Every book can be borrowed only once at the same time.

• This does not work with the cardinality (1,1).

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-86

Step 3: Many-To-Many R. (1)

• A relationship is many-to-many if it has the maxi-

mum cardinality ∗ on both sides (e.g. “for”).

• Many-to-many relationships become their own ta-

bles.

• The columns of this table are the keys of the parti-

cipating entity types, which together form the key

of this table.

• These columns are at the same time foreign keys,

referencing the tables for the entity types.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-87

Step 3: Many-To-Many R. (2)

• Relationship attributes are added as columns. They

are not part of the key, e.g.

for(OrdNo→Orders, ProdNo→Products, Quantity)

• Note that the key of “for” must really consist of

both, “OrdNo” and “ProdNo”.

Since one order can request multiple products, “OrdNo” alone
cannot be key. Since the same product may be subject of multiple
orders, also “ProdNo” alone does not suffice.

• Tables can be renamed. E.g. “Order_Details” is a

better table name than “for”.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-88

Step 3: Many-To-Many R. (3)

for

OrdNo ProdNo Quantity
200 1 1
200 2 1
201 1 5

Orders

OrdNo Date CustNo
200 2/15/00 11
201 2/16/00 11

Products

ProdNo Description Price
1 Apple 0.50
2 Kiwi 0.25
3 Orange 0.60

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-89

Step 3: Many-To-Many R. (4)

• Minimum cardinalities other than 0 for many-to-

many relationships cannot be enforced by the stan-

dard constraints of the relational model.

• E.g. it would make sense to require that every order

must be “for” at least one product. But this beco-

mes a general constraint in the relational model.

• Of course, since this is important for the validity of

the database state, one can specify the cardinality

and later do checks in application programs.

It only cannot be specified declaratively in the CREATE TABLE.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-90

Composite Foreign Keys

Course

�
�

�
�CRN

�
�
� �
�

�
�Title

@
@

@

(1,1)
���

���
���

HHH
HHH

HHH

taught by ���
���

���

HHH
HHH

HHH

(0, ∗)
Instructor

�
�

�
�First

�
�
� �
�

�
�Last

@
@

@

• A composite foreign key is used to reference a table

with a composite key:

Course(CRN, Title, (First, Last) → Instructor)

• If the minimum cardinality is 0, “First” and “Last”

can be null, but only together.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-91

Step 4: One-to-One Rel. (1)

Department

�
�

�
�DName

(1,1)
�

���
���

HH
HHH

HH

lead by ��
���

��

H
HHH

HHH

(0,1)
Employee

�
�

�
�ID

• A relationship is one-to-one if it has maximum car-

dinality 1 on both sides.

• Basically, the translation is the same as for one-to-

many relationships.

However, there is an additional key constructed, see below.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-92

Step 4: One-to-One Rel. (2)

• In this example, it is better to include the Employee

key in the Department table, than vice versa, since

Department has cardinality (1,1):

Department(DName, . . . , Head → Employee)

• In this way, null values are avoided and the mini-

mum cardinality 1 is enforced.

If the department name is included in the Employee table, it can be
null. In addition, a general constraint is required to ensure that every
departments has a department head.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-93

Step 4: One-to-One Rel. (3)

• “Head” is now also a key for the table “Depart-

ment” (!), since an employee can be head of at

most one department.

• It is only an alternative key, not part of the primary

key.

• It enforces the maximum cardinality 1 on the Em-

ployee side.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-94

Step 4: One-to-One Rel. (4)

Man

�
�

�
�MName

H
HHH �
�

�
�Born

(0,1)
������������

PPPPPPPPPPPP

is married to ������������

PPPPPPPPPPPP

(0,1)
Woman

�
����

�
�
�Born
�
�

�
�WName

• The key of any of the two tables can be included

in the other table (as a possibly null foreign key).
However, it would be wrong to do both (redundancy).

• Or translate the relationship into a table on its own:

Marriage(MName → Man, WName → Woman)

• Exercise: What is the key / keys?

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-95

Step 4: One-to-One Rel. (5)

Customer

�
�

�
�SSN

�
�
� �
�

�
�Name

@
@

@

(1,1)
�

�
�

�

@
@

@
@

has �
�

�
�

@
@

@
@

(1,1)
Card

�
�

�
�CardNo

�
�
� �
�

�
�CreditLimit

@
@

@

• In order to enforce the minimum cardinality 1 on

both sides, the tables must be merged:

CustomerCard(SSN, Name, CardNo, CreditLimit)

• SSN and CardNo are both keys. One is selected as

primary key, the other is an alternative key.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-96

Limitations (1)

• The following cardinalities can be translated with

the methods explained above (using only the stan-

dard constraints of the relational model):

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2

E1
(0,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2

E1
(0, ∗)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-97

Limitations (2)

• In addition, all kinds of one-to-one relationships can

be handled:

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0,1)
E2

E1
(0,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0,1)
E2

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(1,1)
E2

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-98

Limitations (3)

• If a relationship is none of these six cases, general

constraints must be used, which can be implemen-

ted, e.g. via

� Checks in application programs that are used to

insert data.

� Triggers, i.e. procedures stored in the database

that are automatically executed e.g. for every

tuple that is inserted or modified.

� SQL queries that are executed from time to time

and that print violations to the constraints.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-99

Limitations (4)

• In particular, the cardinality (1, ∗) sometimes makes

sense, e.g. every purchase order should be for at

least one item:

Order

�
�
�
�No

(1, ∗)
�

�
��

@
@

@@

@
@

@@

�
�

��
for

(0, ∗)
Product

�
�
�
�ID

• The minimum cardinality 1 cannot be enforced de-

claratively in current DBMS.

One uses the same translation as for (0, ∗) and documents/specifies
a general constraint in addition.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-100

Step 1B: Weak Entities

Invoice

�
�

�
�Inv No

�
�
� �
�

�
�Date

@
@

@

(1, ∗)
�

�
�

�

@
@

@
@

�
�

��

@
@

@@

has�
�

��

@
@

@@

�
�

�
�

@
@

@
@

Position

�
�

�
�Pos

• When a weak entity is translated, the key attributes

of the owner entity must be added as a foreign key:

Position(Inv No→ Invoice, Pos, . . .)

• This automatically implements the relationship.
Such relationships must be ignored in Step 2.
It makes sense to specify “DELETE CASCADES” for the foreign key.
Note that there is no “dashed underlining” in the relational model.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-101

Step 5: Check (1)

• At the end, check the generated tables to see whe-

ther they make sense.

• E.g. fill them with a few example rows.

• If a correct ER-schema is correctly translated into

the relational model, one will get a correct relatio-

nal schema.

• However, a by-hand translation can result in mista-

kes, and the ER-schema can contain hidden flaws.

Stefan Brass: Database Systems Universität Halle, 2003

9. Introduction to the Entity-Relationship Model 9-102

Step 5: Check (2)

• Sometimes tables are redundant and can be dele-

ted.

• Think a last time about renaming tables or attri-

butes.

• If two tables have the same key, consider merging

them (“consider” does not mean to do it always!).

• Check the generated tables for a relational normal

form (e.g. 3NF, BCNF, 4NF) (see next chapter).

Stefan Brass: Database Systems Universität Halle, 2003

