
8. Updates in SQL 8-1

Part 8: Updates in SQL

References:
• Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999.

Chap. 8, “SQL — The Relational Database Standard”

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed., McGraw-Hill, 1999.
Chapter 4: “SQL”.

• Kemper/Eickler: Datenbanksysteme (in German), 4th Ed., Oldenbourg, 1997.
Chapter 4: Relationale Anfragesprachen (Relational Query Languages).

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Date/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison-Wesley, 1997.

• van der Lans: SQL, Der ISO-Standard (in German), Hanser, 1990.

• Sunderraman: Oracle Programming, A Primer. Addison-Wesley, 1999.

• Oracle8 SQL Reference, Oracle Corporation, 1997, Part No. A58225-01.

• Oracle8 Concepts, Release 8.0, Oracle Corporation, 1997, Part No. A58227-01.

• Chamberlin: A Complete Guide to DB2 Universal Database. Morgan Kaufmann, 1998.

• Microsoft SQL Server Books Online: Accessing and Changing Data.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-2

Objectives

After completing this chapter, you should be able to:

• use INSERT, UPDATE, and DELETE commands in SQL.

• use COMMIT and ROLLBACK in SQL.

• explain the concept of a transaction.

Mention a typical example and explain the ACID-properties.

• explain what happens when several users access the

database concurrently.

Explain locks and possibly multi-version concurrency control.
When does one need to add “FOR UPDATE” to a query?

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-3

Overview

1. Update commands in SQL

'

&

$

%
2. Transactions

3. Concurrent Accesses

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-4

Update Commands

• SQL has three commands to change the DB state:

� INSERT: For inserting new rows in a table.

� UPDATE: For changing values in existing rows.

� DELETE: For deleting rows from a table.

• In addition, SQL has two commands for ending

transactions:

� COMMIT: Successful end, make changes durable.

� ROLLBACK: Transaction failed, undo all changes.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-5

Example Database

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-6

INSERT Command

• The INSERT-command has two forms:

� For inserting a single row with new data.

� For inserting the result of a query.

• The second form can e.g. be used to copy a table.

But one still has to first define the goal table with CREATE TABLE.
Oracle has CREATE TABLE ... AS SELECT

• In SQL-92, there is only one general INSERT com-

mand: “VALUES” (first form) and “SELECT” (second

form) are both table expressions.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-7

INSERT, 1st Form (1)

• Example:

INSERT INTO STUDENTS

VALUES (105, ’Nina’, ’Brass’, NULL);

• Possible values are: constants, the keywords “NULL”,

“DEFAULT”, any term like “100+5”, “SYSDATE”, etc.

• One can specify values for only a subset of the

columns:

INSERT INTO STUDENTS(SID, FIRST, LAST)

VALUES (105, ’Nina’, ’Brass’)

The default value is inserted in the other column “EMAIL” (e.g. NULL).

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-8

INSERT, 1st Form (2)

-

#
"

!INSERT INTO - Table

?

?-

#
"

!(- Column -

#
"

!) -

�

#
"

!,

6

-

'
&

$
%VALUES -

#
"

!(- Term -

#
"

!) -

�

#
"

!,

6

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-9

INSERT, 2nd Form (1)

• Example:

INSERT INTO FINAL_EXAMS(TERM, ENO, TOPIC, PCT)

SELECT ’2002’, E.ENO, E.TOPIC,

AVG(R.POINTS/E.MAXPT)*100

FROM EXERCISES E, RESULTS R

WHERE E.CAT=’F’ AND R.CAT=’F’ AND E.ENO=R.ENO

GROUP BY E.ENO, E.TOPIC

• The subquery will first be fully evaluated before

tuples are inserted.

So the table to be modified can be used in the subquery with a defined
result and without the risk of endless loops.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-10

INSERT, 2nd Form (2)

-

#
"

!INSERT INTO - Table

?

?-

#
"

!(- Column -

#
"

!) -

�

#
"

!,

6

- Subquery --

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-11

DELETE (1)

• E.g.: Delete all results for Ann Smith:

DELETE FROM RESULTS

WHERE SID IN (SELECT SID

FROM STUDENTS

WHERE FIRST = ’Ann’

AND LAST = ’Smith’)

• Be careful: Without the WHERE-condition, all tuples

are deleted!

It might be be possible to use “ROLLBACK” if something went wrong. In
order to use ROLLBACK, you must find the error before the transaction
is ended. So look at the table after the change whether it is really
what you expected.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-12

DELETE (2)

-

#
"

!DELETE FROM - Table

?

?-

#
"

!WHERE - Condition -

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-13

TRUNCATE (1)

• Oracle, SQL Server, and MySQL (but not DB2 and

Access) have a command

TRUNCATE TABLE 〈Table Name〉

which deletes all rows from the table and frees the

disk space occupied by the table.

• This is similar to a DROP TABLE, but the table defi-

nition (schema information) remains in the system,

only the table data is deleted.

Thus, references in grants (access rights), views, triggers, stored pro-
cedures etc. are not affected.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-14

TRUNCATE (2)

• In contrast to DELETE, TRUNCATE cannot be rolled

back (undone). Therefore it is much faster.

Also, at least in Oracle DELETE would not actually free any disk space.
Another problem is that if one tries to DELETE all rows of a large table,
the rollback segment (storage space for the undo information) might
be too small (in Oracle). Then “DELETE FROM 〈Table Name〉” gives an
error message and nothing is deleted.

• TRUNCATE is not part of the SQL-92 standard.

But it does appear in the Oracle Certification exam.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-15

UPDATE (1)

• The UPDATE command is for changing attribute va-

lues of selected tuples.

• E.g. give all solutions for Exercise 1 of the midterm

exam 2 bonus points:
UPDATE RESULTS

SET POINTS = POINTS + 2

WHERE CAT = ’M’ AND ENO = 1

• The right hand side of the assignment can use the

old values of all attributes of the selected tuple.
The WHERE-condition and the terms that define the new values are
evaluated for all tuples before any update is done. The right hand
side of the assignment can also be the keyword NULL.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-16

UPDATE (2)

• In SQL-92, Oracle, DB2, and SQL server (but not

in SQL-86, MySQL, and Access), a subquery can

be used to compute the new value.
The subquery must return exactly one row (with a single column). If
it returns no rows, a null value is used.

• Multiple columns can be changed in one UPDATE

statement:

UPDATE EXERCISES

SET TOPIC = ’Advanced SQL’,

MAXPT = 12

WHERE CAT = ’H’ AND ENO = 2

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-17

UPDATE (3)

-

#
"

!UPDATE - Table

-

#
"

!SET - Assignment

?

?

�

#
"

!,

6

-

#
"

!WHERE - Condition -

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-18

UPDATE (4)

Assignment:

- Column -

#
"

!= -

-

#
"

!(- Subquery -

#
"

!) -

-

- Term -

• SQL-86, MySQL, and Access do not support subqueries on the right hand
side.

• In SQL-92, DB2, and SQL-Server a subquery can be used as a term, so
the subquery case is already contained in the first alternative. Only for
Oracle 8, the subquery must be explicitly mentioned.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-19

Overview

1. Update commands in SQL

2. Transactions

'

&

$

%
3. Concurrent Accesses

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-20

Transactions (1)

• A transaction is a sequence of DB commands, espe-

cially updates, which the DBMS treats as a unit.

• E.g. a transfer of 50 dollars from account 1 to

account 2 consists of

� checking the current balance and credit limit of

account 1,

� decreasing the balance of 1 by 50 (debit),

� increasing the balance of 2 by 50 (credit),

� writing entries to a banking statement (history

of changes) for both accounts.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-21

Transactions (2)

Transactions are characterized by the ACID-Properties:

• Atomicity

A transaction is either executed completely, or not at all.

• Consistency

A transaction leads from a consistent state to a consistent state.

• Isolation

Transactions of concurrent users do not interfere with each other.

• Durability

Data stored by committed transactions is safe.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-22

Transactions (3)

Atomicity:

• Modern DBMS guarantee that a transaction is

� either executed in total,

� or not at all (“all or nothing” principle).

• If the transaction cannot be executed until the end

(e.g. because of a power failure or system crash),

the database state before the transaction has begun

will be restored when the DBMS is started the next

time.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-23

Transactions (4)

• Atomicity gives the user powerful undo features:

� As long as the transaction has not been declared

as complete (with COMMIT), all changes can be

undone (with ROLLBACK).

� In most DBMS, one can only undo the complete

transaction (not only the last command).

� However, in Oracle and SQL Server it is possi-

ble to set “savepoints” within a transaction and

undo all changes after such a savepoint.

� After COMMIT, no undo is possible.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-24

Transactions (5)

Durability:

• When a DBMS acknowledges the successful end of

a transaction, the changes are guaranteed durable.

• The changes are stored on disk — they are not lost

even if there is a power failure one second later.

In operating systems, you often cannot be sure whether the data is
on disk or still in a buffer.

• Larger DBMS have powerful backup and recovery

mechanisms: Even if a disk fails, no data is lost.

In contrast, OS utilities typically create only one backup per day.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-25

Transactions (6)

• Atomicity and durability together mean that there

is one point in time which lies between

� the user telling the system that the transaction

is complete (COMMIT), and

� the system telling the user that this command

was successfully processed,

when all changes become effective.

If the system crashes before this point, the database state is not
changed. If the system crashes after this point, the database state
contains all changes which the transaction has executed.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-26

Transactions (7)

Isolation:

• A larger DBMS supports concurrent accesses of

multiple users.

• Without control, this could have strange effects in-

cluding lost updates.

• However, a DBMS tries to create the impression

that every transaction runs in isolation, i.e. has ex-

clusive access to the complete database.

• Usually, a DBMS automatically manages locks on

DB objects (e.g. tuples, tables) for this purpose.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-27

Transactions (8)

Consistency:

• User and system can be sure that the current state

is the result of a sequence of completely executed

transactions.

• The user must ensure that each transaction, if ap-

plied fully and in isolation to a consistent state, will

produce a consistent state.

Modern DBMS offer some support: Keys, foreign keys, NOT NULL and
CHECK constraints can be specified declaratively. For more complex
constraints, there are triggers.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-28

Transactions (9)

• The consistency is in part consequence of the other

three properties and in part user responsibility.

• However, it should be appreciated that all data

structures are kept consistent.

If the users stores redundant data, he/she is responsible for updating
them in the same transaction that changed the original data. But then
the system ensures that even if there is a power failure in between, the
two never get out of sync. This is also important for the internal data
structures of the DBMS: E.g. it has to manage indexes (redundant
data structures to quickly find rows with a given column value). It is
very important that all rows in the table are also represented in the
index, otherwise the query behaviour would get unpredictable.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-29

Transaction Management (1)

• SQL has no command for beginning a transaction.
A transaction begins when one logs into the database and every time
after a transaction is finished.

• A transaction is finished with

� COMMIT [WORK]: Makes changes durable.

� ROLLBACK [WORK]: Undoes changes.
Some commands, such as DROP TABLE, will automatically execute a
COMMIT in Oracle, so they cannot be undone.

• The “multi user” features of a DBMS (e.g. Oracle)

can be tried by starting the SQL interpreter several

times concurrently in different windows.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-30

Transaction Management (2)

• If one works with the database for a long time,

one should COMMIT the work from time to time.

If there should be a power failure etc., only the changes after the
last COMMIT are lost. The DBMS also locks tuples for the transaction
until the user decides to COMMIT or ROLLBACK. Long transactions might
hinder other users.

• If one leaves Oracle SQL*Plus normally, changes

are automatically committed (so nothing is lost

when one forgets to use COMMIT).

• However, if one simply closes the window or logs

out of the operating system a ROLLBACK is done.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-31

Transaction Management (3)

• Some systems offer an “autocommit mode”: Then

a commit is automatically done after every update.

But this means that changes cannot be undone.
In SQL*Plus this mode can be selected with “set autocommit on” (it
is off by default). SQL Server by default runs in autocommit mode,
but “BEGIN TRANSACTION” gives the normal mode. In DB2, COMMIT and
ROLLBACK work as usual. MySQL basically has only autocommit mode,
except when one uses special table types that support transactions.
Access automatically commits all changes and does not understand
COMMIT and ROLLBACK.

• Some commands (such as CREATE TABLE) may auto-

matically commit the transaction: They cannot be

undone (and all previous updates get committed).

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-32

Overview

1. Update commands in SQL

2. Transactions

3. Concurrent Accesses

'

&

$

%

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-33

Goal: Isolation

• Every user should have the impression that he/she

has exclusive access to the database for the dura-

tion of the entire transaction.

• All other transactions must appear as if completed

before his/her transaction, or started after it.

• What users see and the changes they perform must

be equivalent to a serial schedule of transactions

(as if there were only one terminal from which the

DB can be accessed).

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-34

Goal: Performance

• While one transaction waits for the disk or user in-

put, the DBMS should work on another transaction

(instead of simply being idle).

• A long running transaction must be interrupted

from time to time to allow shorter transactions to

complete.

Overall this provides quicker response times: Otherwise many short
transactions will queue up after one long one.

• Concurrent transactions might make use of parallel

hardware.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-35

Problems (1)

• The two goals are in conflict with each other:

100% isolation results in very little parallelism —

often entire tables must be locked.

• SQL has no “begin transaction” command. As long

as there are only queries, it is not clear whether they

form one big transaction or are each a separate

transaction.

• DBMS guarantee “some isolation” and offer the

mechanisms to reach full isolation, but need help

from the programmer.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-36

Problems (2)

• Application programming is simplified, because the

programmer normally does not have to worry about

the possibility of concurrent transactions.

• However, programmers must be aware of the few

cases where special commands must be used.

• Errors due to concurrent execution will not be no-

ticed during normal debugging — real system load

is needed and even then it may take months until

a fatal situation occurs.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-37

Locks (1)

• Most systems use locks for concurrency control.

• Locks can be used for objects of different granula-

rity: Tables, disk blocks, tuples, attributes.

• If Transaction A holds a lock on an object, and ano-

ther Transaction B also wants to lock this object,

B must wait.

B is suspended from execution (put to sleep). The lock manager has
for each lock a list of waiting transactions. So when Transaction A
takes the lock off, the lock manager can wake B up. Then B can
acquire the lock.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-38

Locks (2)

Transaction A Transaction B

UPDATE EMP
SET SAL = SAL * 2
WHERE ENAME = ’JAMES’

−→ 1 row updated.
UPDATE EMP

SET SAL = SAL / 2
WHERE ENAME = ’JAMES’

−→ (no reaction)
COMMIT

−→ 1 row updated.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-39

Locks (3)

• Often DBMS have (at least) two kinds of locks:

� Exclusive locks (X) are used for write accesses.
They exclude any other access (read or write).

� Shared locks (S) are used for read accesses.
They exclude write accesses, but allow read accesses by other
transactions.

• This is shown in a “lock compatibility matrix”:

Requested Existing Lock
Lock None S X

S + + −
X + − −

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-40

Deadlocks (1)

• It is possible that two transactions wait on locks

which are held by the other transaction:

Transaction A Transaction B

UPDATE EMP SET ...
WHERE ENAME = ’JAMES’

UPDATE EMP SET ...
WHERE ENAME = ’ALLEN’

UPDATE EMP SET ...
WHERE ENAME = ’JAMES’

UPDATE EMP SET ...
WHERE ENAME = ’ALLEN’

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-41

Deadlocks (2)

• In this case, one of the transactions involved in the

deadlock must be rolled back.

This will free the locks held by this transaction, and the other tran-
saction can continue. Oracle does not roll back a transaction auto-
matically, but will end one of the UPDATE requests with an error. In this
case the application program should call ROLLBACK.

• The deadlock test is costly, therefore some systems

do it only from time to time (or only after a tran-

saction has waited some time for a lock).

• Application programs should be analyzed for possi-

ble deadlocks.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-42

Dirty Read Problem (1)

• Transaction A sets the balance of some account to

1000000, discovers the error, calls ROLLBACK.

Transaction A Transaction B

UPDATE EMP
SET SAL = 1000000
WHERE ENAME = ’JAMES’

SELECT SAL
FROM EMP
WHERE ENAME = ’JAMES’

−→ 1000000
ROLLBACK (Normally excluded)

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-43

Dirty Read Problem (2)

• In the above schedule, Transaction B sees data

which “never existed”.

Also if Transaction A later again changes the balance by another
update, we would speak of a “Dirty Read” (even if Transaction A
finally commits).

• No transaction should be able to observe an inter-

mediate state of another transaction.

• Transactions should see a transaction-consistent

state, i.e. the result of a sequence of committed

transactions (plus its own changes).

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-44

Dirty Read Problem (3)

• It is not difficult to exclude dirty reads, and most

DBMS automatically do that.

• The schedule on slide 8-42 cannot occur in modern

DBMS. The programmer does not have to worry

about dirty reads.

• There are basically two solutions for the dirty read

problem that are used in different systems:

� Exclusive locks on changed tuples.

� Multi-Version concurrency control.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-45

Dirty Read Problem (4)

Solution with Locks:

• The system sets write locks on tuples changed by a

transaction and keeps these locks until the commit.

The locks are set before the change and removed after the commit
(when the log entries are successfully written to the disk). Therefore,
the uncommitted data is not accessible for other transactions.

• A transaction which wants to read a tuple tries to

acquire a read lock for it. This is possible only if

there is no write lock.

The read lock can be taken off immediately after the read is processed
(this is sufficient to avoid dirty reads).

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-46

Dirty Read Problem (5)

“Multi Version Concurrency Control” (Oracle):

• For read accesses, Oracle will restore versions of

the accessed DB blocks which correspond to a state

after the last committed transaction.

• I.e. all uncommitted changes are undone for the

purpose of this read only.

When a query accesses table data, even committed changes of other
transactions are undone if the commit was after the evaluation of the
query started. Oracle guarantees a consistent state for long-running
SELECT queries. Oracle does not guarantee a consistent state for
successive queries (“non-repeatable read problem”).

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-47

Dirty Read Problem (6)

Transaction A Transaction B

SELECT SAL FROM EMP
WHERE ENAME = ’JAMES’

−→ 950
UPDATE EMP
SET SAL = SAL * 2
WHERE ENAME = ’JAMES’

SELECT ... −→ 1900
SELECT ... −→ 950

COMMIT

SELECT ... −→ 1900

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-48

Lost Update (1)

• Consider two updates running concurrently.
Before they are executed, the salary of James is 950.

Transaction A Transaction B

UPDATE EMP UPDATE EMP
SET SAL = SAL * 2 SET SAL = SAL + 50
WHERE ENAME = ’JAMES’ WHERE ENAME = ’JAMES’

• In a serial execution of the two transactions, the

two possible outcomes are 1950 (A is executed be-

fore B), and 2000 (B is executed before A).
However, each update consists of a read and a write, and it is dan-
gerous to interleave the execution of these operations.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-49

Lost Update (2)

• Without precautions, there are schedules of read

and write operations in which only one of the two

updates persists (normally excluded):

Transaction A Transaction B

read(X, ’SAL ...’);
read(Y, ’SAL ...’);
Y := Y * 2;

write(Y, ’SAL ...’);
X := X + 50;

write(X, ’SAL ...’);

• So the second write overwrites the first, and the

final salary in the database is only 1000.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-50

Lost Update (3)

• Such “lost updates” are prevented by most DBMS.

• Oracle would acquire a write lock on the tuple for

the employee “James” before it reads the value to

be updated.

• So if Transaction B is the first to get this lock, then

Transaction A has to wait with the update until B

commits.

This also avoids dirty reads. If we only want to avoid lost updates, B
could free the lock immediately after the write.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-51

Lost Update (4)

• However, lost updates are automatically prevented

only if an UPDATE command is used.

• If for a more complex computation, the old value

is first read with a SELECT command, and then the

new value is written back with an UPDATE command,

lost updates can occur.

The problem is that a SELECT normally does not acquire a lock for the
selected tuples (or only a short-living lock, which is removed imme-
diately after the SELECT). Keeping locks on selected tuples until the
end of the transaction would decrease concurrency/performance too
much (and is often not necessary).

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-52

Lost Update (5)

Transaction A Transaction B

SELECT SAL FROM EMP
WHERE ENAME = ’JAMES’

−→ 950
SELECT ... −→ 950

UPDATE EMP
SET SAL = 1900
WHERE ENAME = ’JAMES’

COMMIT
UPDATE EMP
SET SAL = 1000
WHERE ENAME = ’JAMES’

COMMIT

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-53

Lost Update (6)

• The above schedule with a lost update is possible

in Oracle and other DBMS. In order to avoid it,

“FOR UPDATE” must be added to the query (i.e. the

SELECT result is potentially input for a later change):

SELECT Sal FROM Emp

WHERE EName = ’JAMES’

FOR UPDATE

• Only simple queries can use FOR UPDATE.

The system must be able to find out which tuples should be locked.
Oracle allows joins, but no aggregations, DISTINCT, UNION. In general,
FOR UPDATE can only be used if the query would define an updatable
view.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-54

Lost Update (7)

• The FOR UPDATE clause locks the tuples which satis-

fied the WHERE condition at the time of the query.

• The locks are kept until the end of the transaction.

• One can also specify an attribute:
SELECT Sal FROM Emp

WHERE EName = ’JAMES’

FOR UPDATE OF Sal

• This is useful for systems which allow locking single

attributes.

In Oracle, which allows joins in the queries, it also defines from which
table rows should be locked.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-55

Nonrepeatable Read (1)

• It is possible to query the same data twice in a

transaction, and get different results:

Transaction A Transaction B

SELECT SAL FROM EMP
WHERE ENAME = ’JAMES’
−→ 950

UPDATE EMP
SET SAL = SAL + 50
WHERE ENAME = ’JAMES’

COMMIT
SELECT SAL FROM EMP
WHERE ENAME = ’JAMES’
−→ 1000

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-56

Nonrepeatable Read (2)

• This behavior is not possible in a serial execution

of transactions, so it violates the isolation principle.

The same problem is the source of the lost update for updates split
into SELECT followed by UPDATE (see above).
It is unlikely that exactly the same query would be posed twice in a
transaction. But queries could access overlapping sets of tuples.

• The “Nonrepeatable Read” problem can be avoided

by keeping read locks on the accessed tuples until

the end of the transaction.

Most systems unlock the tuples immediately after they were read in
order to permit more parallelism. However, the “FOR UPDATE” clause
shown above can be used to ensure that the locks are kept.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-57

Inconsistent Analysis (1)

• E.g. suppose that the sum of all salaries is stored

redundantly in another table BUDGET(AMOUNT).

This table has only one row and one column.

• Then these queries should have the same result:

� SELECT SUM(SAL) FROM EMP

� SELECT AMOUNT FROM BUDGET

• However, when both queries are executed one after

the other (in order to check the consistency), there

is no guarantee that they are evaluated with respect

to the same state.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-58

Inconsistent Analysis (2)

• In this case different tuples are accessed, so keeping

locks on the tuples from the time of the first access

does not help.

Oracle guarantees that each query is evaluated with respect to only
one state. So it would help to put the entire analysis into a single
SELECT statement.

• In order to exclude this problem, one needs to lock

both tables explicitly/manually (see below) before

the analysis starts.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-59

Phantom Problem (1)

• Suppose that there is a budget of $5000 for a salary

raise which should be distributed evenly.

Transaction A Transaction B

SELECT COUNT(*)
FROM EMP

−→ 50
INSERT INTO EMP

VALUES (...)

COMMIT
UPDATE EMP
SET SAL = SAL + 100

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-60

Phantom Problem (2)

• In this case, the new employee also received the

salary raise, and $ 5100 were spent instead of the

planned $ 5000.

• Note that it would not help to use the query
SELECT * FROM EMP
FOR UPDATE OF SAL

and to count the number of result rows.

• Now all existing rows of the table are locked, but

the insertion of new rows is still not prevented.
By using only locks on tuples, an INSERT will never be prevented (non-
existing tuples cannot be locked).

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-61

Phantom Problem (3)

• In this case the entire table must be locked:

LOCK TABLE EMP IN EXCLUSIVE MODE

• The LOCK TABLE command is not part of SQL-92.

It works in Oracle and DB2. In MySQL, the syntax is different:
LOCK TABLES T1 WRITE, T2 READ (this command releases all previous
locks, in this way deadlocks are avoided). LOCK TABLE does not work
in SQL Server and Access.

• Instead SQL-92 allows specifying an isolation level

for a transaction.

This is also possible in Oracle, but Oracle’s isolation level SERIALIZABLE
gives nearly no parallelism and still does not guarantee serializability.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-62

Isolation Levels (1)

• SQL-92 (and Oracle) have a command

SET TRANSACTION ISOLATION LEVEL 〈Level〉

• The SQL-Standard has four isolation levels:

� READ UNCOMMITTED: The transaction can read the

current DB state without waiting for locks.

E.g. in order to compute the statistics for the optimizer, only an
estimate is needed, and it doesn’t matter whether some “dirty
data” is contained in the statistics.

� READ COMMITTED: The standard case.

Read locks are only hold for the duration of the read.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-63

Isolation Levels (2)

• Isolation levels, continued:

� REPEATABLE READ: Here read locks are only remo-

ved after the transaction committed.

This does not protect against the phantom problem (and against
an inconsistent analysis spanning multiple tables).

� SERIALIZABLE: The theoretical ideal of complete

isolation. It excludes the phantom problem.

• Oracle supports only “READ COMMITTED” (which is

the default) and “SERIALIZABLE”.

Stefan Brass: Database Systems Universität Halle, 2003

8. Updates in SQL 8-64

“Serializable” in Oracle8

• Suppose that there are two tables R(A) and S(A),

both with only one row containing the value ’old’.

• Then the following schedule is possible in Oracle8,

even in the isolation level SERIALIZABLE:

Transaction A Transaction B

SELECT A FROM R
−→ old
UPDATE S SET A=’new’

SELECT A FROM S
−→ old
UPDATE R SET A=’new’

COMMIT
COMMIT

Stefan Brass: Database Systems Universität Halle, 2003

