
5. SQL I 5-1

Part 5: SQL I
References:

• Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999.
Chap. 8, “SQL — The Relational Database Standard” (Sect. 8.2, 8.3.3, part of 8.3.4.)

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Edition.
McGraw-Hill, 1999: Chapter 4: “SQL”.

• Kemper/Eickler: Datenbanksysteme (in German), Ch. 4, Oldenbourg, 1997.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Heuer/Saake: Datenbanken, Konzepte und Sprachen (in German), Thomson, 1995.

• Date/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison-Wesley, 1997.

• Date: A Guide to the SQL Standard, First Edition, Addison-Wesley, 1987.

• van der Lans: SQL, Der ISO-Standard (in German). Hanser, 1990.

• Sunderraman: Oracle Programming, A Primer. Addison-Wesley, 1999.

• Oracle 8i SQL Reference, Release 2 (8.1.6), Dec. 1999, Part No. A76989-01.

• Chamberlin: A Complete Guide to DB2 Universal Database. Morgan Kaufmann, 1998.

• Microsoft SQL Server Books Online: Accessing and Changing Data.

• Microsoft Jet Database Engine Programmer’s Guide, 2nd Edition (Part of MSDN Library
Visual Studio 6.0).

• DuBois: MySQL. New Riders Publishing, 2000, ISBN 0-7357-0921-1, 756 pages.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-2

Objectives

After completing this chapter, you should be able to:

• write advanced queries in SQL including, e.g.,

several tuple variables over the same relation.

Subqueries, Aggregations, UNION, outer joins and sorting are treated
in Chapter 6.

• Avoid errors and unnecessary complications.

E.g. you should be able to explain the concept of an inconsistent
condition. You should also be able to check whether a query can
possibly produce duplicates (at least in simple cases).

• Check given queries for errors or equivalence.

• Evaluate the portability of certain constructs.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-3

Overview

1. Lexical Syntax

'

&

$

%
2. SELECT-FROM-WHERE, Tuple Variables

3. Terms and Conditions

4. A bit of Logic

5. Null Values

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-4

Example Database

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-5

Lexical Syntax Overview

• The lexical syntax of a language defines how word

symbols (“tokens”) are composed from single cha-

racters. E.g. it defines the exact syntax of

� Identifiers (names for e.g. tables, columns),

� Literals (datatype constants, e.g. numbers),

� Keywords, Operators, Punctation marks.

• Thereafter, the syntax of queries and other com-

mands is defined in terms of these word symbols.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-6

White Space and Comments

White space is allowed between words (tokens):

• Spaces (normally also tabulator characters)

• Line breaks

• Comments:

� From “--” to 〈Line End〉
Supported in SQL-92, Oracle, SQL Server, IBM DB2, MySQL.
MySQL requires a space after the “--”, SQL-92 does not.
Access does not support this comment, and also not /* ...*/.

� From “/*” to “*/”
Supported only in Oracle, SQL Server, MySQL: Less portable.

SQL is a free-format language like Pascal, C, Java.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-7

Numbers (1)

• Numeric literals are constants of numeric data ty-

pes (fixed point and floating point numbers).

• E.g.: 1, +2., -34.5, -.67E-8

• Note that numbers are not enclosed in quotes.

• Numeric Literal:

- Exact Numeric Literal -

- Approximate Numeric Literal

6

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-8

Numbers (2)

• Exact Numeric Literal:

-

-"!

+

-"!

-

6

-

Digits -

? -"!

. - Digits

6

• Digits (Unsigned Integer):

- Digit -
6

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-9

Numbers (3)

• Digit:
-

?

��
��
0

?

?

��
��
1

?

?

��
��
2

?

?

��
��
3

?

?

��
��
4

?

. . .
?

��
��
8

?

?

��
��
9

? -

• Approximate Numeric Literal:

- Exact Numeric Literal -"!

E -

-"!

+

-"!

-

6 Digits -

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-10

Character Strings (1)

• A character string constant/literal is a sequence of

characters enclosed in single quotes, e.g. ’abc’.

• Single quotes in a string must be doubled,

e.g. ’John’’s Book’.
The real value of the string is John’s Book (with a single quote).
The doubling is only a way to input it.

-

#
"

!’ - Any Character except ’ -

#
"

!’ -

6

-

#
"

!’ -

#
"

!’

6

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-11

Character Strings (2)

• The SQL-92 standard allows splitting strings bet-

ween lines (with each segment enclosed in ’).
MySQL does support this syntax. Oracle, SQL Server, and Access do
not support it. However, strings can be combined with the concaten-
ation operator (|| in Oracle, + in SQL Server and Access).

• SQL-92 and all five DBMS allow line breaks inside

string constants.
I.e. the quote can be closed on a subsequent line.

• Microsoft SQL Server, MS Access, and MySQL ac-

cept also string literals enclosed in double quotes.

This does not conform to the standard.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-12

Other Constants (1)

• There are more data types besides numbers and

strings, e.g. (see Chapter 7):

� Character strings in a national character set

� Date, Time, Timestamp, Date/Time Interval

� Bit strings, binary data

� Large Objects

• The syntax of constants of these types is generally

very system-dependent.

Often, there are no constants of these types, but there is an automatic
type conversion (“coercion”) from strings.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-13

Other Constants (2)

• E.g. date values are written as follows:

� Oracle: ’31-OCT-02’ (US), ’31.10.2002’ (Ger.).

The default format (part of national language settings) is automa-
tically converted, otherwise: TO_DATE(’31.10.2002’,’DD.MM.YYYY’).

� SQL-92 Syntax: DATE ’2002-10-31’.

� MySQL uses this syntax (also without “DATE”).

� DB2: ’2002-10-31’, ’10/31/2002’, ’31.10.2002’.

� SQL Server: e.g. ’20021031’, ’10/31/2002’,

’October 31, 2002’ (depends on language).

� Access: #10/31/2002# (US), #31.10.2002# (Ger.).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-14

Identifiers (1)

• Identifiers are used e.g. as table and column names.

- Letter - - -

�

#
"

!_�

�Digit�

�Letter�

• E.g. Instructor_Name, X27, but not _XYZ, 12, 2BE.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-15

Identifiers (2)

• Identifiers can have up to 18 characters (at least).
System Length First Character Other Characters
SQL-86 ≤ 18 A-Z A-Z,0-9
SQL-92 ≤ 128 A-Z,a-z A-Z,a-z,0-9,_
Oracle ≤ 30 A-Z,a-z A-Z,a-z,0-9,_,#,$
SQL Server ≤ 128 A-Z,a-z,_,(@,#) A-Z,a-z,0-9,_,@,#,$
IBM DB2 ≤ 18 (8) A-Z,a-z A-Z,a-z,0-9,_
Access ≤ 64 A-Z,a-z A-Z,a-z,0-9,_
MySQL ≤ 64 A-Z,a-z,0-9,_,$ A-Z,a-z,0-9,_,$

Intermediate SQL-92: “_” at the end forbidden. Entry Level: Like SQL-86 (plus “_”).
In MySQL, identifiers can start with digits, but must contain at least one letter.
Access might permit more characters, depending on the context.

• Names must be different from all reserved words.

There are a lot of reserved words, see below. Embeddings in a pro-
gramming language (PL/SQL, Visual Basic) add reserved words.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-16

Identifiers (3)

• Identifiers (and keywords) are not case sensitive.

It seems that this is what the SQL-92 standard says (the book by Da-
te/Darwen about the Standard states this clearly). Oracle SQL*Plus
converts all letters outside quotes to uppercase. In SQL Server, case
sensitivity can be chosen at installation time. In MySQL, case sensi-
tivity of table names depends on the case sensitivity of file names in
the underlying operating system (tables are stored as files). Within a
query, one must use consistent case. However, keywords and column
names are not case sensitive.

• It is possible to use also national characters.

This is implementation dependent. E.g. in Oracle, one chooses a
database character set when the database is installed. Alphanumeric
characters from this character set can be used in identifiers.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-17

SQL Reserved Words (1)

1 = Oracle 8.0
2 = SQL-92
3 = SQL Server 7

— A —
ABSOLUTE2

ACCESS1

ACTION2

ADD1,2,3

ALL1,2,3

ALLOCATE2

ALTER1,2,3

AND1,2,3

ANY1,2,3

ARE2

AS1,2,3

ASC1,2,3

ASSERTION2

AT2

AUTHORIZATION2,3

AUDIT1

AVG2,3

— B —
BACKUP3

BEGIN2,3

BETWEEN1,2,3

BIT2

BIT_LENGTH2

BOTH2

BREAK3

BROWSE3

BULK3

BY1,2,3

— C —
CASCADE2,3

CASCADED2

CASE2,3

CATALOG2

CHAR1,2

CHARACTER2

CHAR_LENGTH2

CHARACTER_LENGTH2

CHECK1,2,3

CHECKPOINT3

CLOSE2,3

CLUSTER1

CLUSTERED3

COALESCE2,3

COLLATE2

COLLATION2

COLUMN1,3

COMMENT1

COMMIT2,3

COMMITTED3

COMPRESS1

COMPUTE3

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-18

SQL Reserved Words (2)

CONFIRM3

CONNECT1,2

CONNECTION2

CONSTRAINT2,3

CONSTRAINTS2

CONTAINS3

CONTAINSTABLE3

CONTINUE2,3

CONTROLROW3

CONVERT2,3

CORRESPONDING2

COUNT2,3

CREATE1,2,3

CROSS2,3

CURRENT1,2,3

CURRENT_DATE2,3

CURRENT_TIME2,3

CURRENT_TIMESTAMP2,3

CURRENT_USER2,3

CURSOR2,3

— D —
DATABASE3

DATE1,2

DAY2

DBCC3

DEALLOCATE2,3

DEC2

DECIMAL1,2

DECLARE2,3

DEFAULT1,2,3

DEFERRABLE2

DEFERRED2

DELETE1,2,3

DENY3

DESC1,2

DESCRIBE2

DESCRIPTOR2

DIAGNOSTICS2

DISCONNECT2

DISK3

DISTINCT1,2,3

DISTRIBUTED3

DOMAIN2

DOUBLE2,3

DROP1,2,3

DUMMY3

DUMP3

— E —
ELSE1,2,3

END2,3

END-EXEC2

ERRLVL3

ERROREXIT3

ESCAPE2,3

EXCEPT2,3

EXCEPTION2

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-19

SQL Reserved Words (3)

EXCLUSIVE1

EXEC2,3

EXECUTE2,3

EXISTS1,2,3

EXIT3

EXTERNAL2

EXTRACT2

— F —
FALSE2

FETCH2,3

FILE1,3

FILLFACTOR3

FIRST2

FLOAT1,2

FLOPPY3

FOR1,2,3

FOREIGN2,3

FOUND2

FREETEXT3

FREETEXTTABLE3

FROM1,2,3

FULL2,3

— G —
GET2

GLOBAL2

GO2

GOTO2,3

GRANT1,2,3

GROUP1,2,3

— H —
HAVING1,2,3

HOLDLOCK3

HOUR2

— I —
IDENTITY2,3

IDENTITY_INSERT3

IDENTITYCOL3

IDENTIFIED1

IF3

IMMEDIATE1,2

IN1,2,3

INCREMENT1

INDEX1,3

INDICATOR2

INITIAL1

INITIALLY2

INNER2,3

INPUT2

INSENSITIVE2

INSERT1,2,3

INT2

INTEGER1,2

INTERSECT1,2,3

INTERVAL2

INTO1,2,3

IS1,2,3

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-20

SQL Reserved Words (4)

ISOLATION2,3

— J —
JOIN2,3

— K —
KEY2,3

KILL3

— L —
LANGUAGE2

LAST2

LEADING2

LEFT2,3

LEVEL1,2,3

LIKE1,2,3

LINENO3

LOAD3

LOCAL2

LOCK1

LONG1

LOWER2

— M —
MATCH2

MAX2,3

MAXEXTENTS1

MIN2,3

MINUS1

MINUTE2

MIRROREXIT3

MODE1

MODIFY1

MODULE2

MONTH2

— N —
NAMES2

NATIONAL2,3

NATURAL2

NCHAR2

NETWORK1

NEXT2

NO2

NOAUDIT1

NOCHECK3

NOCOMPRESS1

NONCLUSTERED3

NOT1,2,3

NOWAIT1

NULL1,2,3

NULLIF2,3

NUMBER1

NUMERIC2

— O —
OCTET_LENGTH2

OF1,2,3

OFF3

OFFLINE1

OFFSETS3

ON1,2,3

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-21

SQL Reserved Words (5)

ONCE3

ONLINE1

ONLY2,3

OPEN2,3

OPENDATASOURCE3

OPENQUERY3

OPENROWSET3

OPTION1,2,3

OR1,2,3

ORDER1,2,3

OUTER2,3

OUTPUT2

OVER3

OVERLAPS2

— P —
PARTIAL2

PCTFREE1

PERCENT3

PERM3

PERMANENT3

PIPE3

PLAN3

POSITION2

PRECISION2,3

PREPARE2,3

PRESERVE2

PRIMARY2,3

PRINT3

PRIOR1,2

PRIVILEGES1,2,3

PROC3

PROCEDURE2,3

PROCESSEXIT3

PUBLIC1,2,3

— R —
RAISERROR3

RAW1

READ2,3

READTEXT3

REAL2

RECONFIGURE3

REFERENCES2,3

RELATIVE2

RENAME1

REPEATABLE3

REPLICATION3

RESOURCE1

RESTORE3

RESTRICT2,3

RETURN3

REVOKE1,2,3

RIGHT2,3

ROLLBACK2,3

ROW1

ROWCOUNT3

ROWGUIDCOL3

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-22

SQL Reserved Words (6)

ROWID1

ROWNUM1

ROWS1,2

RULE3

— S —
SAVE3

SCHEMA2,3

SCROLL2

SECOND2

SECTION2

SELECT1,2,3

SERIALIZABLE3

SESSION1,2

SESSION_USER2,3

SET1,2,3

SETUSER3

SHARE1

SHUTDOWN3

SIZE1,2

SMALLINT1,2

SOME2,3

SQL2

SQLCODE2

SQLERROR2

SQLSTATE2

START1

STATISTICS3

SUBSTRING2

SUCCESSFUL1

SUM2,3

SYNONYM1

SYSDATE1

SYSTEM_USER2,3

— T —
TABLE1,2,3

TAPE3

TEMP3

TEMPORARY2,3

TEXTSIZE3

THEN1,2,3

TIME2

TIMESTAMP2

TIMEZONE_HOUR2

TIMEZONE_MINUTE2

TO1,2,3

TOP3

TRAILING2

TRAN3

TRANSACTION2,3

TRANSLATE2

TRANSLATION2

TRIGGER1,3

TRIM2

TRUE2

TRUNCATE3

TSEQUAL3

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-23

SQL Reserved Words (7)

— U —
UID1

UNCOMMITTED3

UNION1,2,3

UNIQUE1,2,3

UNKNOWN2

UPDATE1,2,3

UPDATETEXT3

UPPER2

USAGE2

USE3

USER1,2,3

USING2

— V —

VALIDATE1

VALUE2

VALUES1,2,3

VARCHAR1,2

VARCHAR21

VARYING2,3

VIEW1,2,3

— W —
WAITFOR3

WHEN2,3

WHENEVER1,2

WHERE1,2,3

WHILE3

WITH1,2,3

WORK2,3

WRITE2

WRITETEXT3

— Y —
YEAR2

— Z —
ZONE2

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-24

Delimited Identifiers (1)

• It is possible to use any sequence of characters in

double quotes as identifiers, e.g. "id, 2!".

Such identifiers are case-sensitive, and there are no conflicts with
reserved words. SQL-86 does not contain them.

-

#
"

!" - Any Character except " -

#
"

!" -

6

-

#
"

!" -

#
"

!"

6

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-25

Delimited Identifiers (2)

• Delimited identifiers are not character string con-

stants! Character strings have the form ’...’.
SQL Server accepts ’ and " for string constants, and uses [...] for
delimited identifiers. “SET QUOTED_IDENTIFIER ON” selects the SQL-92
standard behaviour (but quoted identifiers are not case sensitive).
Access understands [...] and ‘...‘ for delimited identifiers and ex-
cludes the characters !.‘[]" and leading spaces in delimited identifiers.

• E.g. if you write in Oracle:

SELECT * FROM EMP WHERE ENAME = "JONES"

Error: "JONES" is an invalid column name.
Quoted identifiers are normally used only to rename output columns
(or if column names become reserved words in a new DBMS version).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-26

Delimited Identifiers (3)

• Delimited identifiers are often used when output

columns are renamed, e.g.

SELECT FIRST AS "First Name", LAST "Last Name"

FROM STUDENTS

Note that “AS” is optional (except in MS Access).

• But if the new column name is a legal identifier,

the double quotes are not necessary:

SELECT FIRST AS FIRST_NAME, LAST Last_Name

FROM STUDENTS

• At least in Oracle, it will be printed all-uppercase.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-27

Summary: Lexical Errors

• Using double quotes, e.g. "Smith", for string con-

stants. This is a delimited identifier, no string.
Some systems accept "...", but that is a violation of the standard.

• Using quotes for numbers, e.g. ’123’.
This should give a type error. However, the DBMS may simply convert
the type of one of the operands. Since < and so on are differently
defined for strings and for numbers, this might be dangerous and
should be avoided. E.g. ’12’ < ’3’.

• Using reserved words as table, column, or tuple va-

riable names.
The error message might be strange (not understandable). Therefore,
one should keep this possibility in mind.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-28

Delimiting SQL Queries

• In Oracle SQL*Plus, every SQL statement must

be terminated with a semicolon “;”.

Since SQL statements can extend over several lines, this is necessary
so that SQL*Plus can see where the SQL statement is complete.
Also when SQL is embedded into C programs, the semicolon is used
as delimiter.

• But strictly speaking the semicolon is not part of

the SQL statement.

E.g. in the query analyzer window of MS SQL Server no semicolon
is necessary. It might even be an error, as in the command line in-
terface of DB2. Also, when SQL statements are passed to interface
procedures as strings, as e.g. in ODBC, no semicolon is necessary.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-29

Overview

1. Lexical Syntax

2. SELECT-FROM-WHERE, Tuple Variables

'

&

$

%
3. Terms and Conditions

4. A bit of Logic

5. Null Values

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-30

Basic Query Syntax

• Basic SQL query (extensions follow):

SELECT A1, . . . , An

FROM R1, . . . , Rm

WHERE C

• The FROM clause declares which table(s) are acces-

sed in the query.

• The WHERE clause specifies a condition for the rows

(row combinations) in these tables that are consi-

dered in the query.

• The SELECT clause specifies what to print.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-31

Example Database (again)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-32

Tuple Variables (1)

• The FROM clause can be understood as declaring

variables that range over all tuples of a relation:

SELECT E.ENO, E.TOPIC

FROM EXERCISES E

WHERE E.CAT = ’H’

• This can be executed as:
for E in EXERCISES do

if E.CAT = ’H’ then
print E.ENO, E.TOPIC

• E stands here for a single row in the table EXERCISES

(the loop assigns each row in succession).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-33

Tuple Variables (2)

• A tuple variable is always created: If not given a

name explicitly, it will have the name of the relation:

SELECT EXERCISES.ENO, EXERCISES.TOPIC

FROM EXERCISES

WHERE EXERCISES.CAT = ’H’

• I.e. writing only FROM EXERCISES is understood as:

FROM EXERCISES EXERCISES

(The tuple variable called “EXERCISES” ranges over

the rows of the table “EXERCISES”.)

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-34

Tuple Variables (3)

• If a tuple variable name is explicitly declared, e.g.,

FROM EXERCISES E

it is an error to try to access “EXERCISES.ENO”.

The tuple variable is now called “E”, not “EXERCISES”.

• When one refers to an attribute A of a tuple varia-

ble R, it is possible to write simply A instead of R.A

if R is the only tuple variable that has attribute A.

This is explained further below. In the example, one can write “ENO”
for the attribute, no matter whether one explicitly introduces a tuple
variable or not.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-35

Joins (1)

• Consider a query with two tuple variables:

SELECT A1, . . . , An

FROM STUDENTS S, RESULTS R

WHERE C

• Then S will range over the 4 tuples in STUDENTS, and

R will range over the 8 tuples in RESULTS. In principle,

all 4 ∗ 8 = 32 combinations are considered:

for S in STUDENTS do
for R in RESULTS do

if C then print A1, . . . , An

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-36

Joins (2)

• A good DBMS might use a better evaluation algo-

rithm (depending on the condition C).

This is the task of the query optimizer. E.g. if C contains the join con-
dition S.SID = R.SID, the DBMS might loop over all tuples in RESULTS,
and find the corresponding STUDENTS tuple by using an index over
STUDENTS.SID (most systems automatically create an index over the
key attributes).

• But in order to understand the meaning of a query,

it suffices to consider this simple algorithm.

The query optimizer can use any algorithm that produces the same
output, possibly in a different sequence (SQL does not define the
sequence of the result tuples).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-37

Joins (3)

• The join must be explicitly specified in the WHERE-

condition:

SELECT R.CAT, R.ENO, R.POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID -- Join Condition

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

• Exercise: What will be the output of this query?

SELECT S.FIRST, S.LAST Wrong!
FROM STUDENTS S, RESULTS R

WHERE R.CAT = ’H’ AND R.ENO = 1

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-38

Joins (4)

• It is almost always an error if there are two tuple

variables which are not linked (maybe indirectly) via

join conditions.
However, it is also possible that constant values are required for the
join attributes instead. In seldom cases a connection might also be
done in a subquery.

• In this query, all three tuple varibles are connected:

SELECT E.CAT, E.ENO, R.POINTS, E.MAXPT

FROM STUDENTS S, RESULTS R, EXERCISES E

WHERE S.SID = R.SID

AND R.CAT = E.CAT AND R.ENO = E.ENO

AND S.FIRST = ’Ann’ AND S.LAST = ’Smith’

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-39

Joins (5)

• The tuple variables are connected as follows:

"!

S

S.SID = R.SID "!

R

R.CAT = E.CAT
AND R.ENO = E.ENO

"!

E

• This corresponds to the key-foreign key relation-

ships between the tables.

• If one forgets a join condition, one will often get

many duplicates.

Then it would be wrong to specify DISTINCT without thinking about
the reason for the duplicates.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-40

Attribute References (1)

• Attributes can be accessed in the form

Variable.Attribute

• If only one variable has this attribute, the variable

name can be left out. E.g. this query is legal:

SELECT CAT, ENO, POINTS

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

AND FIRST = ’Ann’ AND LAST = ’Smith’

“FIRST” and “LAST” can only refer to “S”. The attributes “CAT”, “ENO”,
and “POINTS” can only refer to “R”. However, “SID” alone would be
ambiguous, since “S” and “R” both have an attribute with this name.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-41

Attribute References (2)

• Consider this query:
SELECT ENO, SID, POINTS, MAXPT Wrong!
FROM RESULTS R, EXERCISES E

WHERE R.ENO = E.ENO

AND R.CAT = ’H’ AND E.CAT = ’H’

• SQL requires that the user specifies whether he/she

wants R.ENO or E.ENO in the SELECT-clause, although

both are equal, so it actually does not matter.

The rule is purely syntactic: If more than one tuple variable in the FROM

clause has the attribute “ENO”, the tuple variable cannot be left out,
or the DBMS (e.g. Oracle) will print the error message “ORA-00918:
column ambiguously defined”. DB2, SQL Server, Access, MySQL are
equally pedantic.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-42

Query Formulation (1)

• Task: Write an SQL query which prints the topics

of all exercises solved by Ann Smith.

• First it must understood that Ann Smith is a stu-

dent, requiring a tuple variable S over STUDENTS and

the condition S.FIRST=’Ann’ AND S.LAST=’Smith’.

• Exercise topics are requested, so a tuple variable E

over EXERCISES is needed, and the following piece

can already be generated (several exercises can ha-

ve the same topic):

SELECT DISTINCT E.TOPIC

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-43

Query Formulation (2)

• Finally, S and E are not connected.

• When trying to understand a relational database

schema, it helps to draw a connection graph of the

tables based on common columns (foreign keys):

STUDENTS RESULTS EXERCISES

• This shows that a tuple variable R over RESULTS is

required, and yields the condition

S.SID = R.SID AND R.CAT = E.CAT AND R.ENO = E.ENO

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-44

Query Formulation (3)

• It is not always that simple. The connection graph

may contain cycles, which makes the selection of

the right path more difficult and error-prone.

• E.g. consider a course registration database that

also contains GSA assignments.
Graduate student assistants are advanced students (often PhD stu-
dents) who help correcting homeworks etc.

STUDENTS
HH

HHHH ENROLLMENTS

��
����

��
���� GSA

HH
HHHH

COURSES

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-45

Unnecessary Joins (1)

• Do not join more tables than needed.
Queries will run more slowly: Most optimizers do not remove joins.

• E.g. results for Homework 1:

SELECT R.SID, R.POINTS

FROM RESULTS R, EXERCISES E

WHERE R.CAT = E.CAT AND R.ENO = E.ENO

AND E.CAT = ’H’ AND E.ENO = 1

• Can the following query ever give a different result?

SELECT SID, POINTS

FROM RESULTS R

WHERE R.CAT = ’H’ AND R.ENO = 1

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-46

Unnecessary Joins (2)

• What will be the result of this query?

SELECT R.SID, R.POINTS

FROM RESULTS R, EXERCISES E

WHERE R.CAT = ’H’ AND R.ENO = 1

• Is there any difference between these two queries?

SELECT S.FIRST, S.LAST

FROM STUDENTS S

SELECT DISTINCT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R

WHERE S.SID = R.SID

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-47

Self Joins (1)

• It might be possible that in order to generate a re-

sult tuple, more than one tuple must be considered

from the same relation.

• Task: Is there a student who got 10 points for both,

Homwork 1 and Homework 2?

SELECT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS H1, RESULTS H2

WHERE S.SID = H1.SID AND S.SID = H2.SID

AND H1.CAT = ’H’ AND H1.ENO = 1

AND H2.CAT = ’H’ AND H2.ENO = 2

AND H1.POINTS = 10 AND H2.POINTS = 10

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-48

Self Joins (2)

• Find students who solved at least two exercises:

SELECT S.FIRST, S.LAST Wrong!
FROM STUDENTS S, RESULTS E1, RESULTS E2

WHERE S.SID = E1.SID AND S.SID = E2.SID

• The tuple variables E1 and E2 can point to the same

input tuple.

• One must explicitly request that they are different:

WHERE S.SID = E1.SID AND S.SID = E2.SID

AND (E1.CAT <> E2.CAT OR E1.ENO <> E2.ENO)

• This task can also be solved with aggregations.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-49

Duplicate Elimination (1)

• One difference of SQL to relational algebra is that

duplicates have to be explicitly eliminated in SQL.

• E.g. which exercises have already been solved by at

least one student?

SELECT CAT, ENO

FROM RESULTS

CAT ENO

H 1
H 2
M 1
H 1
H 2
M 1
H 1
M 1

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-50

Duplicate Elimination (2)

• If the query might contain duplicates, and there is

no specific reason why they should be shown, use

“SELECT DISTINCT” (DISTINCT applies to rows, not columns):

SELECT DISTINCT CAT, ENO

FROM RESULTS

CAT ENO

H 1

H 2

M 1

• To emphasize that there are duplicates and that

they are really wanted, one can write “SELECT ALL”.

However, “ALL” is the default.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-51

Duplicate Elimination (3)

Sufficient condition for unnecessary DISTINCT:

• Let K be the set of attributes that appear as output

columns under SELECT.

The elements of K are of the form “Tuplevariable.Attribute”. K is the
set of attributes that have a unique value for a given output row.

• Add to K attributes A such that A = c with a

constant c appears in the WHERE-condition.

This test assumes that the condition is a conjunction. Of course, a
condition c = A is treated in the same way. Conditions in subqueries
do not count (subqueries are simply removed before the test is done).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-52

Duplicate Elimination (4)

Test for unnecessary DISTINCT, continued:

• As long as something changes, do the following:

� Add to K attributes A such that A = B appears

in the WHERE-condition and B ∈ K.

� If K contains a key of a tuple variable, add all

other attributes of this tuple variable.

• If K contains a key of every tuple variable listed

under FROM, DISTINCT is superfluous.

If the query contains GROUP BY, one checks instead whether all GROUP
BY columns are contained in K.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-53

Duplicate Elimination (5)

Example:

• Consider the following query:

SELECT DISTINCT S.FIRST, S.LAST, R.ENO, R.POINTS

FROM STUDENTS S, RESULTS R

WHERE R.CAT = ’H’ AND R.SID = S.SID

• Let us assume that FIRST, LAST is declared as an

alternative key for STUDENTS.

• K is initialized with S.FIRST, S.LAST, R.ENO, R.POINTS.

• R.CAT is added because of the condition R.CAT = ’H’.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-54

Duplicate Elimination (6)

Example, continued:

• S.SID and S.EMAIL are added, because K contains a

key of STUDENTS S (S.FIRST and S.LAST).

• R.SID is added because of R.SID = S.SID.

• Now K contains also a key of RESULTS R (R.SID,

R.CAT, R.ENO), thus DISTINCT is superfluous.

• If FIRST, LAST were not a key of STUDENTS, this test

would not succeed.

However, this case it might be useful to print duplicates since in the
real world, students are identified by name (“soft key”).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-55

Duplicate Elimination (7)

• Duplicates should be eliminated with DISTINCT, alt-

hough it works also with GROUP BY:
SELECT CAT, ENO Bad Style!
FROM RESULTS

GROUP BY CAT, ENO

This splits the table into groups of tuples: each group contains tuples
that agree in the values for the grouping attributes CAT, ENO. For each
group, only one output tuple is produced. Normally this is used to
compute aggregation functions (SUM, COUNT) for each group.

• I would consider this as an abuse of GROUP BY.
However, GROUP BY is more flexibe than DISTINCT if one wants to eli-
minate only some duplicates. Also old versions of MySQL did not
support DISTINCT. Then one had to use GROUP BY.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-56

Summary: Join Errors

• Missing join conditions (very common)

• Unnecessary joins (make query slower)

• Problems when several tuple variables over the sa-

me relation are required: If these are “merged”, one

often gets an inconsistent condition (see below).

• Duplicates are often an indication for errors: One

should understand the source of the duplicates and

not simply specify DISTINCT to avoid the problem.

• An unnecessary DISTINCT should be avoided.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-57

Renaming of Output Colums

• To rename the output columns:

SELECT FIRST AS First_Name, LAST AS "Last Name"

FROM STUDENTS

FIRST_NAME Last Name

Ann Smith
Michael Jones
Richard Turner
Maria Brown

• This works in SQL-92, Oracle, SQL Server, DB2,

MySQL, Access, but not in SQL-86.

• “AS” can be left out in SQL-92 and all of the above

systems except Access.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-58

Basic Query Syntax (1)

SELECT-Expression (Simplified):

-

#
"

!SELECT - Goal-List

-

#
"

!FROM - Source-List

?

?-

#
"

!WHERE - Condition - -

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-59

Basic Query Syntax (2)

• Every SQL query must contain the keywords SELECT

and FROM.

Oracle provides a relation “DUAL” which has only one row. It can be
used if only a computation is done without access to the database:
SELECT TO_CHAR(SQRT(2)) FROM DUAL.

• However, in SQL Server, Access, and MySQL, the

FROM-clause can be omitted, e.g. SELECT 1+1.

In Oracle, DB2, and the SQL-92 Standard, this is a syntax error.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-60

SELECT Syntax (1)

Goal-List (after SELECT):

-

-

#
"

!DISTINCT -

-

#
"

!ALL -

6
-

#
"

!* -

? - Goal-Element -

6

�

#
"

!,

6

• ALL (no duplicate elimination) is the default.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-61

SELECT Syntax (2)

Goal-Element:

- Term -

- Alias

6

-

#
"

!AS

6

- Variable -

#
"

!. -

#
"

!*

6

• “Variable.*” and “[AS] Alias” work in SQL-92, Oracle, SQL Server, and
DB2, MySQL and Access (in Access “AS” is required). These constructs
are not contained in the old SQL-86 standard.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-62

FROM Syntax (1)

Source-List (after FROM):

- Source-Element - -

�

#
"

!,

6

- Variable

6

• In SQL-92, SQL Server, Access, DB2, and MySQL (but not in Oracle 8i)
one can write “AS” between Source-Element and Variable.

• In SQL-92 and DB2 (but not Oracle, SQL Server, Access, MySQL) new
column names can be defined: “STUDENTS AS S(NO,FNAME,LNAME, EMAIL)”.

• If the “Source-Element” is a subquery, the tuple variable is required in
SQL-92, SQL Server, and DB2, but not in Oracle and Access. In this
case the above column renaming syntax suddenly works in SQL Server.

• SQL-92, SQL Server, Access, DB2 support joins under FROM (see below).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-63

FROM Syntax (2)

Source-Element:
- - Table -

- User/Schema -

'
&

$
%.

6

-

'
&

$
%(Subquery

'
&

$
%)

6

• SQL-86 did not allow subqueries in the FROM-list.

• MySQL does not support subqueries at all.

• Basic (simplified) syntax of the FROM-clause:

FROM Table [Variable], ..., Table [Variable]

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-64

FROM Syntax (3)

Table Names:

• Tables of other users can be referenced in the FROM-

list (if read permission was granted):

SELECT * FROM BRASS.EXERCISES

• The username is here really a name of a DB schema

(one DBMS server can manage several schemas).
In Oracle, schema and user are more or less the same: Every user
has his/her own schema, every schema belongs to exactly one user.
In DB2, there can be multiple schemas per user and you can write
“schema.table” as in Oracle. In SQL Server, a fully qualified name
has the form “server.database.owner.table”, but there are various ab-
breviations including “owner.table” or simply “table”. In MySQL, one
can write “database.table”.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-65

Overview

1. Lexical Syntax

2. SELECT-FROM-WHERE, Tuple Variables

3. Terms and Conditions

'

&

$

%
4. A bit of Logic

5. Null Values

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-66

Terms (1)

• A term denotes a data element.

Instead of term, one can also say “expression”.

• Terms are:

� Attribute References, e.g. STUDENT.SID.

� Constants (“literals”), e.g. ’Ann’, 1.

� Composed Terms, using datatype operators like

+, -, *, / (for numbers), || (string concatenati-

on), and datatype functions, e.g. 0.9 * MAXPT.

� Aggregation terms, e.g. MAX(POINTS): see Part 6.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-67

Terms (2)

• The SQL-86 standard contained only +, -, *, /.

• Current database management systems still differ

in other data type operations.

• E.g. the operator || is contained in the SQL-92

standard, but does not work e.g. in SQL Server.

String concatenation is written “+” in SQL Server and Access.
In MySQL, one must write “concat(s1, s2)” (but there is “--ansi”).
Other datatype functions (e.g. SUBSTR) are even less standardized.

• SQL knows the standard precedence rules, e.g. that

A+B*C means A+(B*C). Parentheses may be used.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-68

Terms (3)

• Terms are used in conditions, e.g.

R.POINTS > E.MAXPT * 0.8

contains the terms “R.POINTS” and “E.MAXPT * 0.8”.

• Also the SELECT-list can contain arbitrary terms:

SELECT LAST || ’, ’ || FIRST "Name"
FROM STUDENTS

Name

Smith, Ann
Jones, Michael
Turner, Richard
Brown, Maria

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-69

Terms (4)

Term (Scalar Expression, Value Expression):

- Constant (Literal)

- Attribute Reference -

- Aggregation Term -

-

#
"

!(- Term -

#
"

!) -

-
6

-

#
"

!-

6

�Binary Operator

6

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-70

Terms (5)

Binary Operator:

-

#
"

!+

-

#
"

!- -

-

#
"

!* -

-

#
"

!/ -

-

#
"

!|| -

-
6

• SQL Server, Access, and MySQL do not use “||” for string concatenation.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-71

Conditions (1)

• Conditions consist of atomic formulas, e.g.

POINTS >= 8,

connected by “AND”, “OR”, “NOT”.

• AND binds more strongly than OR, thus

CAT = ’H’ AND ENO = 1 OR ENO = 2

is implicitly parenthesized as

(CAT = ’H’ AND ENO = 1) OR ENO = 2

• In this example, this is probably not intended.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-72

Conditions (2)

• It might help to draw a complex condition (or com-

plex term) as an “operator tree”:

CAT = ’H’ ENO = 1

��
���

����

HH
HHH

HHHH

'
&

$
%AND

��
���

����

ENO = 2

HH
HHH

HHHH

'
&

$
%OR

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-73

Conditions (3)

• NOT binds most strongly, i.e. it is applied only to the

immediately following condition (atomic formula).

• Parentheses (...) can be used to override the

operator priorities (precedences, binding strengths).

• Sometimes, it might be clearer to use parentheses

even if they are not necessary to enforce the right

structure of the formula.

However, beginners tend to use a lot of parentheses (probably because
they are unsure about the operator priorities). This does not make
the formula easier to understand.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-74

Conditions (4)

Condition:

- Atomic Formula -

-

#
"

!NOT

6

-

#
"

!(- Condition -

#
"

!)

6

�

#
"

!AND

6

�

#
"

!OR

6

• SQL-92 allows “IS NOT TRUE”, “IS FALSE” etc. after formulas
(not supported in Oracle 8.0, SQL Server, DB2, MySQL, Access).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-75

Conditions (5)

• AND and OR must take complete logical conditions

(something that is true or false) on both sides.

• So the following is a syntax error although it is

similar to natural language:

SELECT DISTINCT SID Wrong!
FROM RESULTS

WHERE CAT = ’H’ AND POINTS >= 9

AND ENO = 1 OR 2

• Exception: ... BETWEEN ... AND ...

Here the word AND does not denote the logical connective.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-76

Comparisons (1)

Atomic Formula (Form 1):

- Term - Comparison-Op - Term -

• Comparison operators: =, <>, <, >, <=, >=.

• Comparison operators can be used for numbers as

well as for strings, e.g.: POINTS >= 8, LAST < ’M’.

• “Not equals” is written in standard SQL as “<>”.

Oracle, SQL Server, DB2, and MySQL understand also “!=” (Access
does not accept this notation). “^=” works in Oracle and DB2, but
not in SQL Server, Access, or MySQL.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-77

Comparisons (2)

• Numbers are compared differently than strings,

e.g. 3 < 20, but ’3’ > ’20’.

String comparison is done character by character until the outcome is
clear. In this case, “3” comes alphabetically after “2”, therefore the
rest of the string is not important.

• According to the SQL-92 standard, it is an error to

compare strings with numbers, e.g. 3 > ’20’.

The two compared values must be of compatible types: All numeric
types are compatible, and all string types are compatible, but numeric
types are not compatible with string types.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-78

Comparisons (3)

• Comparing a string with a number should be avoi-

ded, since the outcome is very system dependent:

� SQL-92, DB2, and Access produce a type error.

� Oracle, MySQL, and SQL Server convert the

string to a number and do a numeric comparison.
If the string is not of numeric format, MySQL simply converts it
to 0. E.g. 0 = ’abc’ is true in MySQL. In Oracle and SQL Server,
one gets an error if the string is not of numeric format. This might
be a runtime error if the string is a column value.

� However, if a column is compared with a con-

stant, SQL server uses the column type.
Aggregate functions have still higher priority than columns.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-79

String Comparisons (1)

• The outcome of comparing (=, <>, <, <=, >, >=) two

character strings may depend on the DBMS.

Or settings within the DBMS.

• The SQL-92 standard defines the notion of “colla-

tion sequences” (or “collations”) which determine

� for any pair X and Y of characters, whether

X < Y , X = Y , or X > Y , and

� whether the blank-padded semantics (PAD SPACE)

or the non-padded semantics (NO PAD) is used.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-80

String Comparisons (2)

• ’a’ < ’b’ etc., and ’A’ < ’B’ etc. can be expected.

• But the systems differ in the comparison of upper-

case and lowercase characters. The defaults are:

� In Oracle all uppercase characters come before

all lowercase characters (ASCII), e.g. ’Z’ < ’a’.

� In DB2, uppercase and lowercase characters are

interleaved, e.g.: ’a’ < ’A’, ’A’ < ’b’.

� SQL Server, MS Access, and MySQL are case-

insensitive, e.g.: ’a’ = ’A’.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-81

String Comparisons (3)

• It might be possible to change this, but e.g. only

during installation (SQL Server), or during databa-

se creation (Oracle, DB2).

• When the order (<, =, >) of every two characters

is known, the comparison of strings of the same

length is clear:

� The system compares character by character,

the first comparison which does not give “=” de-

termines the result.
Actually, DB2 makes two passes: It first compares the character
“weights”, and if there is no difference, also the character codes.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-82

String Comparisons (4)

• For strings of different lengths, there are

� Non-Padded Comparison Semantics:

E.g. ’a’ < ’a ’.

Strings are compared character by character. When one string
ends and no difference was found, the shorter string is considered
less than the longer one.

� Blank-Padded Comparison Semantics:

E.g. ’a’ = ’a ’.

The shorter string is filled with ’ ’ before the comparison.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-83

String Comparisons (5)

• DB2, SQL Server, Access, and MySQL use the

blank-padded semantics (at least by default).

• Oracle uses the nonpadded semantics if at least

one operand of a comparison has type VARCHAR2.

Oracle has introduced a type VARCHAR2(n). It is currently synonymous
to VARCHAR(n), but Oracle intends to change the comparison seman-
tics for VARCHAR, while the semantics for VARCHAR2 will remain stable.
String literals (constants) in the query have type CHAR(n). E.g. a com-
parison of CHAR(10) and CHAR(20) columns can possibly yield “true” as
can a comparison of these columns with, e.g., ’abc’. But CHAR(10)

and VARCHAR(20) can only be equal if the VARCHAR happens to be of
length 10. Trailing spaces in VARCHAR2-columns can be quite annoying:
They are not visible in the output, but the comparison does not work.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-84

String Comparisons (6)

• If the system uses a case-sensitive semantics, one

can get a case-insentive comparison by converting

both sides e.g. to uppercase:

SELECT FIRST, LAST

FROM STUDENTS

WHERE UPPER(EMAIL) = UPPER(’xyz@hotmail.com’)

• UPPER works in SQL-92, Oracle, SQL Server, DB2,

MySQL. In Access, use UCASE.

UCASE works also in DB2 and MySQL. The book by Chamberlin about
DB2 lists only UCASE.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-85

String Comparisons (7)

• The opposite case (case-sensitive comparison with

a case-insensitive system) is more difficult.

But also much more seldom required.

• E.g. in MySQL, one can convert a string to a binary

string in order to get case-sensitive comparison:

BINARY EMAIL = ’xyz@hotmail.com’

• The same trick works in SQL Server:

CAST(EMAIL AS VARBINARY(255))

= CAST(’...’ AS VARBINARY(255))

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-86

String Comparisons (8)

• If one suspects that trailing spaces make a compa-

rison fail, one can make them visible in this way:

SELECT ’"’ || LAST || ’"’ AS LAST_NAME

FROM STUDENTS

• One can also remove trailing spaces:

� TRIM(TRAILING ’ ’ FROM LAST)

in SQL-92 (works in MySQL)

This syntax is not supported in Oracle, DB2, SQL Server, Access.

� RTRIM(LAST)

in Oracle, DB2, SQL Server, MySQL, Access.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-87

BETWEEN Conditions

Atomic Formula (Form 2):

- Term -

#
"

!BETWEEN

-

#
"

!NOT

6

- Term -

#
"

!AND - Term -

• x BETWEEN y AND z is equivalent to

x >= y AND x <= z.

• E.g.: POINTS BETWEEN 5 AND 8

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-88

LIKE Conditions (1)

Atomic Formula (Form 3):

- Term -

#
"

!LIKE - Term

?

-

#
"

!NOT

6

-

#
"

!ESCAPE - Character -

• E.g.: EMAIL LIKE ’%.pitt.edu’

Thius is true for all email addresses that end in “pitt.edu”.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-89

LIKE Conditions (2)

• The right argument is interpreted as pattern.

In SQL-86 and DB2, it must be a string constant.

In Oracle, SQL Server, Access, and MySQL, one can use any string
valued term as pattern (especially also another column).

• “%” in the pattern matches any sequence of arbi-

trary characters (including the empty string).

• “_” matches any single character.

SQL Server and Access support also character ranges, e.g. [a-zA-Z].
MySQL has an additional operator “RLIKE” (or “REGEXP”) that accepts
arbitrary regular expressions as patterns.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-90

LIKE Conditions (3)

• To use the characters “%” and “_” without their

special meaning in the pattern, an “escape” cha-

racter is used.

The escape character removes the special meaning of the following
character. E.g. if “\” is the escape character, then “\%” matches only
a percent sign, not an arbitrary string.

• The escape character must be declared, e.g.:

PROCNAME LIKE ’_%’ ESCAPE ’\’

This gives all procedure names starting with an “_”.

In MySQL, if no escape character is explicitly declared, “\” is the
default escape character. However, this violates the SQL-92 standard.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-91

LIKE Conditions (4)

• LIKE uses the non-padded semantics.
Oracle, DB2, MySQL, and Access use the non-padded semantics as
required by the SQL-92 standard. Note that MySQL removes trailing
spaces when strings are stored. All systems fill values with blanks if
the column is declared as fixed-length character string.
In SQL Server, if the stored string contains more spaces at the end
than the pattern, it might still match. If the pattern contains more
spaces, the match fails. With the Unicode national character set types,
the strict non-padded semantics is used.

• E.g. ’a’ = ’a ’ might be true (in some DBMS),

but ’a’ LIKE ’a ’ is surely false.

• The case sensitivity is the same as for ordinary com-

parisons.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-92

IN Conditions (1)

Atomic Formula (Form 4):

- Term -

#
"

!IN

-

#
"

!NOT

6

-

#
"

!(- Term -

#
"

!) -

�

#
"

!,

6

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-93

IN Conditions (2)

• E.g. CAT IN (’M’, ’F’)

• This is equivalent to

CAT = ’M’ OR CAT = ’F’

• The SQL-86 standard allowed only constants in the

enumeration of values.
SQL-92, Oracle, SQL Server, and DB2 allow arbitrary terms, but it
is normally better style to use OR if the set is not an enumeration of
constants.

• Note that although in mathematics, “(...)” are

used for intervals, here they mean “set”.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-94

Overview

1. Lexical Syntax

2. SELECT-FROM-WHERE, Tuple Variables

3. Terms and Conditions

4. A bit of Logic

'

&

$

%
5. Null Values

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-95

A bit of Logic (1)

• Conditions used in the WHERE-clause are formulas of

tuple calculus, which is a variant of predicate logic.

• Predicate logic is studied for about 100 years in

mathematics and philosophy.

• Some basic knowledge of logic can actually help in

query formulation.

• Here, the notions “inconsistent”, “tautology”, “im-

plied”, and “equivalent” are introduced, as well as

some concrete equivalences for the propositional

connectives AND, OR, NOT.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-96

A bit of Logic (2)

• A condition is inconsistent if it can never be satis-

fied, i.e. is always false, no matter what the databa-

se state is and no matter which tuples are assigned

to the tuple variables.

• E.g., no matter what row stands R for, R.ENO cannot

be two different values at the same time:

R.ENO = 1 AND R.ENO = 2 Wrong!

• An inconsistent condition as WHERE-clause means

that the query will never return any result rows.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-97

A bit of Logic (3)

• Database management systems like Oracle do not

give warnings for inconsistent conditions.

Actually, it can be proven that it is impossible to develop an algorithm
that detects all inconsistent conditions (if also subqueries or arithmetic
operations are allowed).

• The other extreme is a tautology, i.e. a condition

that is always true, e.g.:

R.ENO < 3 OR R.ENO > 2

• Obviously, such conditions are not useful.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-98

A bit of Logic (4)

• A condition A implies a condition B if, whenever A

is true, also B is true.

The implied condition B is weaker than condition A that implies it.
A set of conditions {A1, . . . , An} implies a condition B if, whenever A1

to An are all true, also B is true.

• E.g. “R.ENO = 2” implies “R.ENO <> 1”.

• Therefore, the condition

R.ENO = 2 AND R.ENO <> 1

can be safely simplified to R.ENO = 2.

The second part gives nothing new.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-99

A bit of Logic (5)

• Two conditions are called (logically) equivalent if

they always yield the same truth value.

I.e. A and B are equivalent if for all database states and all assignments
of rows to the tuple variables, if A is true, then B is true, and if
A is false, then B is false. Equivalence means implication in both
directions.

• E.g. it is not important whether one writes

CAT = ’H’ AND ENO = 1

or vice versa

ENO = 1 AND CAT = ’H’

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-100

A bit of Logic (6)

• For the correctness of a query, it is not important

which one out of several logically equivalent formu-

lation one chooses.

• Of course, some formulations are more complicated

than others, and one should choose a simple one.
For instance, although adding an implied condition as shown above
does not change the correctness of the query, points might be taken
off in the exam for unnecessary complications.

• Modern DBMSs have good optimizers, such that

simple equivalences like A AND B vs. B AND A are

not important for the runtime of a query.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-101

A bit of Logic (7)

• More complicated equivalences might not be de-

tected by the query optimizer, e.g. writing

ENO - 2 = 0

might prevent that a special access structure for

finding rows quickly (B-tree index) is used, which

would have been used for the logically equivalent

condition

ENO = 2

• However, one gets the same answer in both cases,

only the first query might run slightly longer.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-102

Some Equivalences (1)

• A AND B ≡ B AND A

This is called commutativity. It holds also for OR.

• A AND (B AND C) ≡ (A AND B) AND C

This is called associativity. It means that no parentheses are neces-
sary if one has a sequence of conditions all connected with AND. The
associative law also holds for OR.

• A AND (B OR C) ≡ (A OR B) AND (A OR C)

This is the distribution law. It holds also for AND and OR exchanged.

• NOT (NOT A) ≡ A

This means that double negation cancels out.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-103

Some Equivalences (2)

• NOT(A AND B) ≡ (NOT A) OR (NOT B)

This is De Morgan’s Law. It holds also with AND and OR exchanged.

• A AND A ≡ A

It makes no sense to repeat a condition. This holds also for OR.

• NOT X < Y ≡ X >= Y

The comparison operators always come in complementary pairs, and
it is not necessary to use NOT directly in front of such a condition.
Together with De Morgan’s law and the double negation rule, one
can eliminate NOT from conditions (that use only the six comparison
operators). But this might not always make the condition simpler.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-104

Some Equivalences (3)

• X = Y ≡ Y = X (symmetry)

• X < Y ≡ Y > X

And the same for <= and >=.
Also, X <= Y is equivalent to X < Y OR X = Y .

• X = Y AND Y = Z implies X = Z (transitivity)
And the same for <, <=, >, >=. When A implies B, the formulas A

and A AND B are equivalent. Thus, X = Y AND Y = Z is equivalent to
X = Y AND Y = Z AND X = Z Since certain equality conditions can
be evaluated by using an index, it makes sense for a query optimizer
to compute implied such conditions.

• X = X is a tautology if X cannot be null.
SQL uses a three-valued logic, see below.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-105

Exercise

• Is there any problem with this query? The task is to

list all students who solved an exercise about SQL

and an exercise about relational algebra.

SELECT S.FIRST, S.LAST

FROM STUDENTS S, RESULTS R,

EXERCISES E1, EXERCISES E2

WHERE S.SID = R.SID

AND R.CAT = E1.CAT AND R.ENO = E1.ENO

AND R.CAT = E2.CAT AND R.ENO = E2.ENO

AND E1.TOPIC = ’SQL’

AND E2.TOPIC = ’Rel. Alg.’

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-106

Overview

1. Lexical Syntax

2. SELECT-FROM-WHERE, Tuple Variables

3. Terms and Conditions

4. A bit of Logic

5. Null Values

'

&

$

%

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-107

Three-Valued Logic (1)

• Consider the following query:

SELECT FIRST, LAST

FROM STUDENTS

WHERE EMAIL = ’xyz@acm.org’

• What happens if a course has a null value in the

column EMAIL? It is not printed.

• But it also does not appear in the result of this

query (because the value is unknown):

SELECT FIRST, LAST

FROM STUDENTS

WHERE NOT (EMAIL = ’xyz@acm.org’)

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-108

Three-Valued Logic (2)

• The condition

EMAIL = ’xyz@acm.org’

does not evaluate to false if EMAIL is null, since then

the row would appear in the negated query.

Of course, it also does not yield true.

• SQL uses a three-valued logic for treating null va-

lues. The three truth values are true, false, and

unknown.

Instead of “unknown”, one also often reads “null”.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-109

Three-Valued Logic (3)

• The idea is that tuples which have a null value in

an attribute which is important for the query should

be “filtered out” — they should not influence the

query result.

• The real attribute value is unknown or does not

exist, so saying that the result of a comparison with

a null value is true or false is equally wrong.

• In SQL, a comparison with a null value always yields

the third truth value “unknown”.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-110

Three-Valued Logic (4)

• A result row is printed only if the WHERE-condition

evaluates to “true”.

• Thus, the following query gives the empty result:

SELECT FIRST, LAST

FROM STUDENTS

WHERE EMAIL = null

Actually, the query is illegal in SQL-92, and DB2 refuses it. Oracle, SQL
Server, Access, and MySQL accept it and print the empty result.

• “AND”/“OR” forward the truth value “unknown”,

unless the result is clear:

E.g. “true OR unknown = true”.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-111

Three-Valued Logic (5)

P Q NOT P P AND Q P OR Q
false false true false false
false unknown true false unknown
false true true false true
unknown false unknown false unknown
unknown unknown unknown unknown unknown
unknown true unknown unknown true
true false false false true
true unknown false unknown true
true true false true true

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-112

Test for Null (1)

Atomic Formula (Form 5):

- Term -

#
"

!IS -

#
"

!NULL -

-

#
"

!NOT

6

• E.g. EMAIL IS NULL

• The test for a null value can only be done in this

way.

“EMAIL = NULL” does not give the expected result in Oracle and SQL
Server, it is a syntax error in SQL-92 and DB2.
In SQL Server 7, “EMAIL = NULL” works after the command
“SET ANSI_NULLS OFF” (then a two-valued logic is used).

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-113

Test for Null (2)

• Exercise: The following query prints all students

with an email address in the domain “.pitt.edu”:

SELECT FIRST, LAST

FROM STUDENTS

WHERE EMAIL IS NOT NULL

AND EMAIL LIKE ’%.pitt.edu’

Is the test for null necessary?

• CHECK-integrity constraints are satisfied if the condi-

tion evaluates to the third truth value “unknown”.

They are only violated if the condition evaluates to false.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-114

Problems of Null Values (1)

• For those accustomed to working with a two-valued

logic (all of us), null values can sometimes lead

to surprises: Some standard logical equivalences do

not hold in SQL.

• E.g. if students with an email address in the domain

“.pitt.edu” are counted, and students with an out-

side email address, one would normally assume to

get all students.

• But this is not true in SQL — those with a null

value in the EMAIL column are not counted.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-115

Problems of Null Values (2)

• E.g. X = X evaluates to “unknown”, not to “true”

if X is null.

• Since the null value is used with different meanings,

there can be no satisfying semantics for a query

language.

E.g. the meaning “value exists, but unknown” (∃X: . . .) would allow
to use standard logical equivalences.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-116

Terms with Null Values (1)

• Data type functions will normally return null if one

of their arguments is null. E.g. if A is null, A+B will

be null.

In Oracle, A || B (the concatenation of strings A and B) returns B if A

is null (violates the SQL-92 standard).

• NULL by itself is not a term (expression), although it

can be used in many contexts that otherwise require

a term.

Stefan Brass: Database Systems Universität Halle, 2003

5. SQL I 5-117

Terms with Null Values (2)

• NULL has no type, so at least we need a context in

which the type is clear:

� In SQL-92 and DB2, CAST(NULL AS type) gives a

null value of the specified type.

� In Oracle, NULL often can be used as a term, but

e.g. this gives an error:

select 1 from dual union select null from dual

One must write TO_NUMBER(null).

� In SQL Server, Access, and MySQL “NULL” is

handled like a normal term (with arbitrary type).

Stefan Brass: Database Systems Universität Halle, 2003

