
2. Introduction to the Relational Model and SQL 2-1

Part 2: Introduction to the
Relational Model and SQL

References:
• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Edition, 1999.

Section 7.1, “Relational Model Concepts”
Section 8.2, “Basic Queries in SQL”

• Kemper/Eickler: Datenbanksysteme (in German), 3rd Edition, 1999.
Section 3.1, “Definition des relationalen Modells” (“Definition of the Relational Model”)
Section 4.6, “Einfache SQL-Anfragen” (“Simple SQL Queries”)

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Sunderraman: Oracle Programming, A Primer. Addison-Wesley, 1999.

• Oracle8i SQL Reference, Rel. 2 (8.1.6), Oracle Corp., Dec. 1999, Part No. A76989-01.

• SQL*Plus: Quick Reference, Rel. 8.1.6, Oracle Corp., Oct. 1999, Part No. 75665-01.

• SQL*Plus: User’s Guide and Reference, Rel. 8.1.6, Oct. 1999, Part No. A75664-01.

• Codd: A relational model of data for large shared data banks. Communications of the
ACM, 13(6), 377–387, 1970.

• Boyce/Chamberlin: SEQUEL: A structured English query language. In ACM SIGMOD
Conf. on the Management of Data, 1974.

• Astrahan et al: System R: A relational approach to database management. ACM Tran-
sactions on Database Systems 1(2), 97–137, 1976.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-2

Objectives

After completing this chapter, you should be able to:

• explain the basic notions of the relational model:

table/relation, row/tuple, column/attribute,

column value/attribute value.

• explain the meaning of keys and foreign keys.

• write simple SQL queries (queries to one table).

• use Oracle SQL*Plus for evaluating queries.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-3

Overview

1. The Relational Model, Example Database

'

&

$

%
2. Using SQL*Plus: First Demonstration

3. Simple SQL Queries

4. Historical Remarks

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-4

The Relational Model (1)

• The relational model structures data in table form,

i.e. a relational DB is a set of named tables.

• A relational database schema defines:

� Names of tables in the database.

� The columns of each table, i.e. the column na-

mes and the data types of the column entries.
The columns have a sequence (first column, second column, etc.).
Each column can store only data of a particular type, e.g. strings,
numbers of a certain length and precision, date values, etc.

� Integrity constraints.
Integrity constraints are conditions that the data must satisfy.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-5

The Relational Model (2)

• For instance, Oracle comes with an example data-

base that consists of three tables:

� EMP: Information about employees.

� DEPT: Information about departments.

� SALGRADE: Information about salary ranges

for different levels/grades.

This table is not used in the following example queries.

• Depending on the version of the example database,

there might be further tables.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-6

The Relational Model (3)

• The Table DEPT has the following columns:

� DEPTNO: Department Number,

� DNAME: Department Name,

� LOC: Location.

DEPT

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-7

The Relational Model (4)

The columns have the following data types:

• DEPTNO has the data type NUMERIC(2),

i.e. can be a two-digit integer from -99 to +99.

Obviously, one does not want negative department numbers.
They can be excluded by means of constraints.

• DNAME has the type VARCHAR(14), i.e. is a character

string of variable length that consists of at most

14 characters.

• LOC has the type VARCHAR(13).

The data dictionary (system catalog) lists types NUMBER(2), VARCHAR2(14), and
VARCHAR2(13). These are Oracle-specific names for the types listed above.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-8

The Relational Model (5)

• A relational database state (instance of a given

schema) defines for each table a set of rows.

• The example table “DEPT” has currently four rows.

• The relational model does not define any particular

order of the rows (e.g. which is first, second, etc.).

But rows can be sorted for output.

• Each row specifies values for the columns of the

table.

E.g. one row above has the value 10 for the column DEPTNO, the value
’ACCOUNTING’ for DNAME, and ’NEW YORK’ for LOC.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-9

Summary (1)

R

Table Name
PPPPPPPPPq

A1 · · · An

Column
PPPPPPPPq

Column��������)

a1,1

...
am,1

· · ·
...

· · ·

a1,n

...
am,n

Row -

Row -

�������)

Table
Entry

(Column
Value)

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-10

Summary (2)

• A more theoretically oriented person would use the

following synonyms:

� Relation instead of table.

A table is formally a subset of the cartesian product of the domains
of the columns, and that is called a relation in mathematics. Car-
tesian coordinates are (X, Y)-pairs of real numbers, i.e. elements
of IR × IR. The relation < can also be understood as a subset of
IR × IR (e.g. (1,2) is contained in the relation, and (2,1) is not
contained in the relation). However, database relations are always
finite and they may have more than two columns.

� Tuple instead of row.

� Attribute instead of column.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-11

Summary (3)

• Old-style practical people might say

� record instead of row,

A table row (tuple) is basically the same as a record in Pascal or
a structure in C: It has several named components. However, the
storage structure of a tuple in external memory (on the disk) is
not necessarily the same as that of a record in main memory.

� field instead of column,

� field value instead of table entry,

� file instead of table.

That should be avoided since it is confusing: Modern DBMS might
store many tables in the same operating system file, and they may
also split the same table over different files.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-12

Keys (1)

• The column DEPTNO is declared as a “key” of the

table DEPT.

• That means that a value for DEPTNO always uniquely

identifies a single row in the table.

• For instance, the table already contains a row with

DEPTNO = 10.

• If one tries to add another row with the same va-

lue 10 for DEPTNO, one gets an error message.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-13

Keys (2)

• Keys are an example of constraints: Conditions that

the table contents (DB state) must satisfy in addi-

tion to the basic structure given by the columns.

• Constraints are declared as part of the DB schema.

• More than one key can be declared for a table.

E.g., one could discuss whether DNAME should also be a key (in addition
to DEPTNO already being a key). This would exclude the possibility that
there can ever be two departments with the same name.

• Keys and other constraints are treated more fully

in Chapter 3.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-14

Another Example Table (1)

EMP (data about employees) has the following columns:

• EMPNO: A unique number for every employee.

• ENAME: Employee name.

• JOB: Employee position (e.g. CLERK).

• MGR: Direct supervisor of this employee.

• HIREDATE: Employee hire date.

• SAL: Employee salary.

• COMM: Commission (only for salespeople).

• DEPTNO: Department where this employee works.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-15

Another Example Table (2)

EMP

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

7566 JONES MANAGER 7839 02-APR-81 2975 20

7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30

7698 BLAKE MANAGER 7839 01-MAY-81 2850 30

7782 CLARK MANAGER 7839 09-JUN-81 2450 10

7788 SCOTT ANALYST 7566 09-DEC-82 3000 20

7839 KING PRESIDENT 17-NOV-81 5000 10

7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7900 JAMES CLERK 7698 03-DEC-81 950 30

7902 FORD ANALYST 7566 03-DEC-81 3000 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-16

Foreign Keys (1)

• The relational model has no physical pointers.

• However, it has some kind of “logical pointer”.

• E.g., the column DEPTNO in the table EMP refers to

the table DEPT.

• Since DEPTNO is declared as a key in the table DEPT, a

department number uniquely identifies a single row

of DEPT.

• A value for DEPTNO can be seen as “logical address”

of a row in DEPT.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-17

Foreign Keys (2)

• By including a department number in EMP, each row

in EMP “points to” a row in DEPT.

• Of course, it is important that department numbers

in EMP also occur in DEPT.

• E.g. if EMP contains a row with DEPTNO = 70, this

would be a kind of “dangling pointer”.

Of course, the system does not crash as would be the case with physi-
cal pointers: In SQL, rows are combined by comparing column values,
and then this row would simply be ignored, because no matching row
in DEPT is found. But nevertheless, such a table entry is some kind of
error and should be excluded. This is the purpose of foreign keys.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-18

Foreign Keys (3)

• The relational model permits to declare DEPTNO as

a foreign key that references DEPT.

• Then a DBMS will refuse

� an insertion into EMP with a value for DEPTNO that

does not appear in DEPT,

� a deletion of a row in DEPT that is still referenced

by a row in EMP,

It might be possible to select that in this case all employees of
the deleted department are recursively deleted, too.

� corresponding changes of DEPTNO values.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-19

Foreign Keys (4)

• The example table contains also a second foreign

key: The column MGR contains the employee number

of the employee’s direct supervisor.

• This shows that

� It is possible that a foreign key refers to another

row in the same table (or even the same row).

� The foreign key column and the referenced key

column can have different names.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-20

Null Values

• The relational model allows table entries to remain

empty (contain a “null value”).

• In the example table: Only salespeople have a com-

mission, the company president has no supervisor.

• In the schema declaration, one can specify for each

column whether it accepts null values or not.

• The null value is treated specially in comparisons.

See Chapter 5.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-21

Overview

1. The Relational Model, Example Database

2. Using SQL*Plus: First Demonstration

'

&

$

%
3. Simple SQL Queries

4. Historical Remarks

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-22

Oracle and SQL*Plus (1)

• SQL is the standard database language for relatio-

nal database management systems (RDBMSs).

Oracle supports SQL, as do all other modern RDBMS (e.g. DB2).
The systems differ in many small details, see below.

• SQL*Plus is Oracle’s basic interface to the DBMS.

The DBMS itself (DB server) runs as a set of background processes,
maybe on another machine in the network.

• E.g. C programs with embedded SQL also commu-

nicate with the Oracle server in SQL, but do not

use SQL*Plus.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-23

Oracle and SQL*Plus (2)

• The main task of SQL*Plus is

� to allow the user to enter SQL statements,

It provides some editing functions, e.g. to correct errors.

� send the query to the server, fetch the result,

� and print the output table.

It provides some control over output formatting.
Simpler reports can be developed entirely in SQL*Plus.

• SQL*Plus also can process batch files (that contain

a sequence of commands). This is also supported

by a simple variable replacement mechanism.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-24

Basic Use of SQL*Plus (1)

• Under UNIX, enter the command “sqlplus”.

Environment variables must be set, especially ORACLE_HOME (e.g. to
/oracle/OraHome1/), ORACLE_SID (database name, e.g. products), and
possibly ORACLE_BASE (e.g. to /oracle/OraHome1/), TWO_TASK (e.g. lxdb1),
and of course PATH and possibly LD_LIBRARY_PATH. One can also set
NLS_LANG to choose a language (e.g. GERMAN_GERMANY.WE8ISO8859P1).

• Under Windows, select SQL*Plus from the “Start”

Menu.

E.g. Start → Programme → Entwicklungsumgebungen → Oracle →
Oracle-OraHome92 → Application Development → SQL Plus.

• SQL*Plus then asks for username and password.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-25

Basic Use of SQL*Plus (2)

• Many Oracle installations have a guest user “scott”

with password “tiger”.

For local databases, the “host string” field in the login box can usually
be left empty. For a remote server, one must specify the server name
as defined e.g. in D:\software\Oracle9i\network\admin\tnsnames.ora.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-26

Basic Use of SQL*Plus (3)

• In Oracle, every user has his/her own DB schema.

• It is possible that two users have tables with the sa-

me name, but they are still distinct tables, because

they belong to different schemas.

Within an Oracle database, tables are identified by schema/user name
and table name. E.g. the table presidents of the user brass can be
referenced as “brass.presidents”. Of course, one can read or modify
it only if its owner (brass) has given the corresponding access rights.

• The example tables EMP, DEPT, etc. should already

be installed under the guest account scott.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-27

Basic Use of SQL*Plus (4)

• It is also possible to install a copy of the example

tables under one’s own account:

� Execute “demobld” from the UNIX or Windows

command prompt.
It first tries to use a default user name (based on the OS account).
If that does not work, an error message ist printed and the program
asks for the correct Oracle user name and password.

� Or start SQL*Plus and enter:

“@D:\Software\Oracle9i\sqlplus\demo\demobld”
The path depends on the installation. The file demobld.sql con-
tains the SQL statements to create the tables and fill them with
data. The command “@x” executes the statements in x.sql.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-28

Basic Use of SQL*Plus (5)

• The SQL*Plus prompt is “SQL>”.

Or “2”, “3”, etc. for continuation lines.

• In SQL*Plus, SQL statements must end with “;”.

Alternative: “/” as the only contents of the next line.

• SQL statements can extend over several lines, and

SQL*Plus needs to know when the user is finished.

The “;” is not part of SQL. In DB2 and SQL server, the user must
instead click on “execute” when the query is complete.

• SQL is not case sensitive (except in strings).

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-29

Basic Use of SQL*Plus (6)

• To leave SQL*Plus, enter “exit” or “quit”.
In contrast to SQL statements, such control commands need no semi-
colon at the end. If they extend over multiple lines, each line (except
the last) must end with a hyphen “-”.

• The contents of a table can be listed with, e.g.:

SELECT * FROM EMP;

• The data dictionary table CAT (“catalog”) lists all

tables owned by the current user:

SELECT * FROM CAT;

• The columns of a table can be listed with, e.g.:

DESCRIBE EMP

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-30

Basic Use of SQL*Plus (7)

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-31

Basic Use of SQL*Plus (8)

UNIX> sqlplus
. . . (Version and copyright information for SQL*Plus)

Enter user-name: scott
Enter password: tiger (not visible)

. . . (Version information for the database server)

SQL> select * from dept;
DEPTNO DNAME LOC

---------- -------------- -------------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-32

Basic Use of SQL*Plus (9)

• The last SQL command is still stored in a buffer.

It can be changed and re-executed.

E.g. in case of a syntax error.

• c/old/new (change) replaces the first occurrence of

“old” by “new”.

In the current line (line in which the error was detected).
One can als write c/old/new/ or e.g. c!old!new.

• l (list) shows the contents of the buffer.

l3 shows only line 3 and makes it the current one.

• r (run) executes the contents of the buffer.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-33

Basic Use of SQL*Plus (10)

• edit writes the contents of the buffer to a file and

calls an editor.

The editor can be selected by the user, e.g. define _editor = vi. This
command is only valid for the current session, but one can write it
into login.sql (in the current directory).

• It is also possible to write the SQL query into a

file, e.g. “x.sql”, and execute the file with @x.

E.g. you can keep an editor open in one window, write to the file,
and execute the file in the other window, where you have SQL*Plus
open.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-34

Basic Use of SQL*Plus (11)

• It is important to clearly distinguish between

� SQL commands (queries, updates, etc.),

� SQL*Plus commands (e.g. exit, l, r, @x).

• SQL commands can extend over multiple lines and

must be closed with a “;” in SQL*Plus, whereas

SQL*Plus commands are single-line.

• If one accesses Oracle e.g. via Embedded SQL or

JDBC, the SQL*Plus extensions are not available.

Of course, they are also not available if one uses a different DBMS.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-35

Basic Use of SQL*Plus (12)

SQL> select *
2 frm dept;

frm dept

ERROR at line 2:

ORA-00923: FROM keyword not found where expected

SQL> c/frm/from/
2* from dept

SQL> r
1 select *

2* from dept

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-36

Basic Use of SQL*Plus (13)

• If the first keyword is misspelled, the command is

not stored in the buffer, and must be retyped.

Only SQL statements (recognized by first keyword) are stored in the
buffer, not SQL*Plus control commands.

• In SQL*Plus, the character “&” is used for marking

variables that are replaced by user input:

SQL> insert into DEPT

2 values (50, ’R&D’, ’Pittsburgh’);

Enter value for d:

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-37

Basic Use of SQL*Plus (14)

• Oracle reports only one error in the SQL command.

There might be more errors.

The position which Oracle marks is not necessary the position where
the error really is (no parser can do that). But it is also not necessarily
the first position where a parser could find an error.

• E.g. here quotes are missing around strings:

SQL> insert into DEPT values(60, WWW, Dallas);

insert into dept values(40, www, Dallas)

*
ERROR at line 1:

ORA-00984: column not allowed here

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-38

SQL*Plus Worksheet

• If one wants a bit more graphical interface, some

Oracle versions come with the SQL*Plus Works-

heet (part of the Oracle Enterprise Manager).

• The window is split into two parts:

� In the upper part one enters the query.

� In the lower part, the result is shown.

• The lightning button executes the query.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-39

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-40

Overview

1. The Relational Model, Example Database

2. Using SQL*Plus: First Demonstration

3. Simple SQL Queries

'

&

$

%
4. Historical Remarks

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-41

Simple SQL Queries (1)

• Simple SQL queries have the structure

SELECT ... FROM ... WHERE ...

• After FROM list the table from which to extract data.

More than one table can be listed, see below.

• After WHERE specify conditions for the rows to be

selected.

The WHERE-clause can be missing, then all rows are selected.

• After SELECT define which columns to print.

“*” prints all columns.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-42

Simple SQL Queries (2)

• Show the entire department table:

SELECT * FROM DEPT

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

• Equivalent Solution:

SELECT DEPTNO, DNAME, LOC FROM DEPT

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-43

Simple SQL Queries (3)

• SQL is not case-sensitive, except inside strings.
All characters in an SQL command are turned into uppercase before
they are processed (except inside quotes).
To get a table or column name containing lower case letters, it must
be enclosed in " (should be avoided).

• SQL is format-free (like Pascal, C, Java, etc.).
Line breaks, spaces, and tabulator characters can be inserted between
the words (tokens) of an SQL command.

• Thus, the following query is the same as the pre-

vious one:
select deptno, DName , loc

from dept

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-44

Using Conditions (1)

• To get all data about the department in “DALLAS”:

SELECT * FROM DEPT WHERE LOC = ’DALLAS’

DEPTNO DNAME LOC

20 RESEARCH DALLAS

• String constants are marked by single quotes.

Double quotes are only used for delimited identifiers (column names
containing lowercase characters etc.).

• Inside string constants, SQL is case-sensitive.

So the following will select 0 rows (empty result):

SELECT * FROM DEPT WHERE LOC = ’Dallas’

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-45

Using Conditions (2)

• Print the name, job, and salary of all employees

who earn at least $2500:

SELECT ENAME, JOB, SAL

FROM EMP

WHERE SAL >= 2500

ENAME JOB SAL

JONES MANAGER 2975

BLAKE MANAGER 2850

SCOTT ANALYST 3000

KING PRESIDENT 5000

FORD ANALYST 3000

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-46

Using Conditions (3)

• It is not necessary to output columns which are

used in the conditions.
WHERE is evaluated before SELECT.

• E.g. print the employee number and name of all

managers:
SELECT EMPNO, ENAME

FROM EMP

WHERE JOB = ’MANAGER’

EMPNO ENAME

7566 JONES

7698 BLAKE

7782 CLARK

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-47

Pattern Matching (1)

• SQL also has an operator for “pattern matching”

of strings (allowing the use of “wildcards”).

• E.g. print number and name of all managers:
SELECT EMPNO, ENAME

FROM EMP

WHERE JOB LIKE ’MANA%’

• “%” matches any sequence of arbitrary characters,

“_” matches any single character.

“%” corresponds to the “*” in the shell (command prompt),
and “_” to “?”.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-48

Pattern Matching (2)

• LIKE must be used for pattern matching.

The equals sign only tests for literal equality.

Even if the comparison string contains “%” or “_”.

• E.g. the following is legal SQL, but will return the

empty result:

SELECT EMPNO, ENAME Wrong!
FROM EMP

WHERE JOB = ’MANA%’

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-49

Arithmetic Expressions

• SQL contains standard arithmetic expressions.

• E.g. print all employees who earn less than $15000

per year:
SELECT ENAME

FROM EMP

WHERE SAL < 15000 / 12

ENAME

SMITH

ADAMS

JAMES

• The condition “SAL * 12 < 15000” is equivalent.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-50

Renaming Output Columns

• E.g. print the yearly salary of all managers:

SELECT ENAME, SAL * 12

FROM EMP

WHERE JOB = ’MANAGER’

ENAME SAL * 12

JONES 35700

BLAKE 34200

CLARK 29400

• To print the column heading “YEARLY_SALARY”:

SELECT ENAME, SAL * 12 YEARLY_SALARY ...

or SELECT ENAME, SAL * 12 AS YEARLY_SALARY ...

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-51

Logical Connectives (1)

• AND, OR, NOT and parentheses “(”, “)” can be used

to construct more complicated conditions.

• E.g. print name and salary of all managers and the

president:
SELECT ENAME, SAL

FROM EMP

WHERE JOB = ’MANAGER’ OR JOB = ’PRESIDENT’

• The query would not work with AND instead of OR.

The result would be empty (“0 rows selected”), since the JOB cannot
be “MANAGER” and “PRESIDENT” at the same time.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-52

Logical Connectives (2)

• The WHERE-condition is conceptionally evaluated for

every row of the table listed under FROM. If the result

is true, the SELECT-list is printed.

• An AND-condition is true if both parts are true,

an OR-condition is already true if one part is true:

C1 C2 C1 AND C2 C1 OR C2 NOT C1

False False False False True
False True False True True
True False False True False
True True True True False

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-53

Logical Connectives (3)

EMP

EMPNO ENAME JOB JOB=’MANAGER’ JOB=’PRESIDENT’

7369 SMITH CLERK False False

7499 ALLEN SALESMAN False False

7521 WARD SALESMAN False False

7566 JONES MANAGER True False

7654 MARTIN SALESMAN False False

7698 BLAKE MANAGER True False

7782 CLARK MANAGER True False

7788 SCOTT ANALYST False False

7839 KING PRESIDENT False True

7844 TURNER SALESMAN False False
...

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-54

Logical Connectives (4)

• Without parentheses, AND binds more strongly than

OR (and NOT binds even more strongly than AND).

• E.g. consider this query:
SELECT ENAME, SAL Wrong!
FROM EMP

WHERE JOB = ’MANAGER’ OR JOB = ’PRESIDENT’

AND SAL >= 3000

• The system will understand the condition as:

WHERE JOB = ’MANAGER’

OR (JOB = ’PRESIDENT’ AND SAL >= 3000)

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-55

Removing Duplicates (1)

• Queries can produce duplicate rows.

• E.g. list all jobs:

SELECT JOB FROM EMP

• Since this query is processed by a loop over the em-

ployee table, in which the job of every employee is

printed, it will output the same job multiple times.

• Duplicate elimination can be requested by adding

the keyword DISTINCT after SELECT:

SELECT DISTINCT JOB FROM EMP

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-56

Removing Duplicates (2)

• DISTINCT works on output rows, not single columns.

Specify it only once, even for multiple columns:

SELECT DISTINCT JOB, MGR

FROM EMP

• There is no way to print each job only once and

for every job the set of managers — that would be

a nested table (supported only in advanced NF2 or

object-relational DBMS).

In standard relational DBMS, each table entry is atomic. But output
formatting can give something similar. E.g. in SQL*Plus, it is possible
to suppress a column value if it is the same as in the preceding row.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-57

Sorting Output Rows (1)

• The sequence, in which the resulting rows are prin-

ted, is not predictable unless one requests sorting.

• E.g. print employee names and their salary, ordered

alphabetically by employee name:

SELECT ENAME, SAL

FROM EMP

ORDER BY ENAME

• The “ORDER BY” clause is purely cosmetic:

It does not change the query result in any way,

it only prints the result in a more readable fashion.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-58

Sorting Output Rows (2)

• One can also specify multiple sorting criteria.

Only useful if the main column for sorting contains duplicate values.

• E.g. print the employees who earn at least 2000

dollars, ordered by department number. For equal

department numbers, employees should be ordered

by descending salaries:

SELECT DEPTNO, ENAME, SAL

FROM EMP

WHERE SAL >= 2000

ORDER BY DEPTNO, SAL DESC

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-59

Outlook: Joining Tables

• Data from different tables can be combined.

E.g. print employees in the “RESEARCH” department:
SELECT ENAME

FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO

AND DNAME = ’RESEARCH’

• Conceptually, the WHERE-condition will be evaluated

for every combination of one row from each table.

• Since “DEPTNO” appears in both tables, and both

tables are referenced in this query, the column name

must be made unique by prefixing the table table.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-60

Exercises (1)

EMP

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 SMITH CLERK 7902 17-DEC-80 800 20

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

7566 JONES MANAGER 7839 02-APR-81 2975 20

7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30

7698 BLAKE MANAGER 7839 01-MAY-81 2850 30

7782 CLARK MANAGER 7839 09-JUN-81 2450 10

7788 SCOTT ANALYST 7566 09-DEC-82 3000 20

7839 KING PRESIDENT 17-NOV-81 5000 10

7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7900 JAMES CLERK 7698 03-DEC-81 950 30

7902 FORD ANALYST 7566 03-DEC-81 3000 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-61

Exercises (2)

Please formulate the following queries in SQL:

• Who has employee number 7839 (King) as direct

supervisor?

• Who has a salary between $1000 and $2000? Print

name and salary and order the result by names.

“Between” is meant as including the two boundaries.

• Which employee names consist of exactly four cha-

racters?

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-62

Exercises (3)

• Print name, salary, and department of all employees

who work in department 10 or 30 and earn less

than $1500.

Make sure that both conditions are really satisfied.

• Which jobs occur in which departments? I.e. print

every combination of department number and job

which occurs in the EMP table, and print each such

combination only once.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-63

Overview

1. The Relational Model, Example Database

2. Using SQL*Plus: First Demonstration

3. Simple SQL Queries

4. Historical Remarks

'

&

$

%

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-64

Relational Model: History

• The relational model (RM) was proposed by

Edgar F. Codd (1970).
It was the first data model that was theoretically defined prior to
implementation. Codd got the Turing Price in 1981.

• First Implementations (1976):

� System R (IBM)

� Ingres (Stonebraker, UC Berkeley).

• First commercial systems: Oracle (1979), Ingres

(1980?) and IBM SQL/DS (1981).

• Today “state of the art” in industry.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-65

Reasons for Success (1)

• Much simpler than earlier data models.

Only one concept: Finite relation (set of tuples).

• Easily understandable, even for non specialists:

Relations correspond to tables.

• Abstraction of known “files of records”.

• The relational model has set-oriented operations.

In earlier models, one had to navigate from one

record to the next.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-66

Reasons for Success (2)

• Declarative query language:

No need to think about efficient evaluation.

One only writes conditions for the required data. The DBMS con-
tains a “query optimizer” that finds an efficient query evaluation plan
(i.e. generates a good imperative program for evaluating the query).
In earlier models, programmers had to think about the use of indexes
(access paths) and many other details.

• The relational model has a solid theoretical foun-

dation. It is tightly connected to first-order logic.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-67

SQL

• Today, SQL is the only database language for re-

lational DBMSs (industry standard).

• SQL is used for:

� Interactive “ad-hoc” commands and

� application program development (embedded in-

to other languages like C, Java, HTML).

• SQL is based on a variant of first order logic called

tuple calculus.

But includes elements from relational algebra, too (e.g. UNION).
It tries to be relatively near to natural language.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-68

History

• SEQUEL, an earlier version of SQL, was designed

by Chamberlin, Boyce et al. at IBM Research, San

Jose (1974).

SEQUEL stands for “Structured English Query Language”. Some
people pronounce SQL this way. Others use “ess-cue-ell”. The name
was changed for legal reasons (SEQUEL was a registered trademark).
Codd was also in San Jose when he invented the relational model.

• SQL was the language of System/R (1976/77).

System/R was a very influential research prototype.

• First commercial systems supporting SQL were

Oracle (1979) and IBM SQL/DS (1981).

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-69

Standards

• First Standard 1986/87 (ANSI/ISO).

This was very late as there were already several SQL systems on the
market. The standard was the “smallest common denominator”. It
contains only the common features of the existing implementations.

• Extension for foreign keys etc. in 1989 (SQL-89).

This version is called also SQL-1. All commercial implementations
today support this standard, but each have significant extensions.

• Major Extension: SQL-2 or SQL-92 (1992).

Upward compatible to SQL-1. The standard defines three levels: “ent-
ry”, “intermediate”, “full”. Oracle 8.0 and SQL Server 7.0 have only
entry level conformance, but many extensions. SQL-92 is still the
yardstick for RDBMSs.

Stefan Brass: Database Systems Universität Halle, 2003

2. Introduction to the Relational Model and SQL 2-70

Future

• Current Standard: SQL-99.

SQL-99 is a preliminary version of the SQL-3 standard. Until 12/2000,
the volumes 1–5 and 10 of the SQL-99 standard appeared. They
have together 2355 pages. The SQL-2 standard, which is not yet
completely implemented, had only 587 pages.

• Some Features of SQL-3:

� User-defined data types, type constructors.

E.g. “LIST”, “SET”, “ROW” for structured attribute values.

� OO-Features (e.g. inheritance/subtables).

� Recursive queries.

� Triggers, Persistent Stored Modules.

Stefan Brass: Database Systems Universität Halle, 2003

