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Abstract

Bottom-up evaluation is a central part of query evaluation / program execution in deduc-
tive databases. It is used after a source code optimization like magic sets or SLDmagic
that ensures that only facts relevant for the query can be derived. Then bottom-up evalu-
ation simply performs the iteration of the standard TP -operator to compute the minimal
model. However, there are different ways to implement bottom-up evaluation efficiently.
Since this is most critical for the performance of a deductive database system, and since
performance is critical for the acceptance of deductive database technology, this question
deserves a thorough analysis. In this paper we start this work by discussing several different
implementation alternatives. Especially, we propose a new implementation of bottom-up
evaluation called “Push-Method”. First runtime comparisons are given.
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1 Introduction

Deductive databases (Minker 1988; Ullman and Zaniolo 1990; Freitag et al. 1991;
Ramakrishnan et al. 1994; Vaghani et al. 1994; Friesen et al. 1995; Ramakrish-
nan and Ullman 1995) have not yet been very successful in practice (at least in
terms of market share). However, their basic idea is practically very important:
Deductive databases aim at an integrated system of database and programming
language that is based on the declarative paradigm which was so successful in
database languages. Currently, database programming is typically done in lan-
guages like PHP or Java. The programs construct SQL statements, send them
to the database server, fetch the results, and process them. The interface is not
very smooth, and although the situation can be improved with specific database
languages like PL/SQL and server-side procedures / user-defined functions within
the DBMS, the language paradigms remain different. Object-oriented databases
were one approach to develop an integrated system based on a single paradigm,
but there the declarativity of the database query part was sacrificed, and they did
not get a significant market share, either. Nevertheless, there is an obvious demand
for integrated database/programming systems, and this demand has even grown
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because of object-relational features that need programming inside the database
server, and because of web and XML applications.

One of the reasons why deductive databases were not yet successful is the non-
satisfying performance of many prototypes. If somebody moves from a standard
relational database to a deductive database, he or she would expect that the per-
formance of query evaluation is not significantly worse in the deductive database.

Another, and even more important reason, is that deductive database prototypes
have not really tried to be useful also as a programming platform — they were con-
centrated only on recursive query evaluation. For instance, whereas a large fraction
of a Prolog system is usually written in Prolog, deductive database prototypes are
usually completely written in C++.

There has been a lot of progress over the years on recursive query evaluation (Ban-
cilhon and Ramakrishnan 1986), which is certainly an important task, because many
applications use tree-structured or graph-structured data. A large part of this work
was about source-level optimizations, like the well-known magic-set method (Ban-
cilhon et al. 1986; Beeri and Ramakrishnan 1991) and its many optimizations,
including the SLDMagic-method of the author (Brass 2000).

However, this all depends on an efficient implementation of bottom-up evaluation.
If one wants to build a new deductive database system which a real chance for
acceptance in practice, one needs to clarify first how bottom-up evaluation should
be done. This is not obvious, and several alternatives will be discussed in this paper.

This is also related to the second problem mentioned above: For using a Datalog-
variant as a real programming language efficiently, at least sometimes something
must be known about the basic evaluation method. Of course, one must be careful
so that the meaning of programs can be understood declaratively. But at least to
some degree programmers might help the system to efficiently execute a program
if a typical basic execution method is known.

Note that programming in deductive databases is not the same as programming
in Pure Prolog. In deductive databases one thinks in the direction of the arrow,
because they are based on bottom-up evaluation. For instance left recursion is very
natural in this way, whereas in Prolog it must be avoided.

The XSB system must be mentioned here (Sagonas et al. 1994), because it is still
actively developed and used, in contrast to many deductive database prototypes,
which are no longer supported. It is also much faster than many deductive database
prototypes. However, it is not based on bottom-up evaluation, it uses to a significant
extent Prolog technology (however, it offers tabling to avoid infinite loops).

Our belief is that the bottom-up approach has still room for improvement in
order to deliver competitive performance. In (Brass 2000) we proposed a source-level
transformation that is for tail-recursions asymptotically faster than the standard
magic set method (and also than the tabling method underlying the XSB system).
It is also interesting because it unifies many improvements which were proposed for
the magic set method over time.

After a source-level transformation like SLDmagic, which solves the problem of
goal-direction, one needs an efficient implementation of bottom-up evaluation. The
research reported in this paper is a step in this direction.
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2 Basic Framework

The approach we want to follow is to translate Datalog into C++, which can then
be compiled to machine code. A first prototype was developed in a diploma thesis
and is currently being evaluated.

There are three types of predicates:

• EDB predicates (“extensional database”), the given database relations,
• IDB predicates (“intensional database”), which are defined by means of rules,
• built-in predicates like <, which usually have an infinite extension, and are

defined by means of program code inside the system.

The purpose of bottom-up evaluation is to compute the extensions of the IDB
relations. Actually, only one of them is the “answer predicate”, the extension of
which must be printed, or otherwise made available to the user.

Bottom-up evaluation works by applying the rules from right to left, so basically
it computes the minimal model by iterating the standard TP -operator. Of course, an
important goal is to apply every applicable rule instance only once via rule-ordering
and managing deltas for recursive rules (“seminaive evaluation”).

Because of the infinite extension, built-in predicates can only be called when
certain arguments are bound (i.e. input arguments, known values). In contrast,
a free argument position permits a variable (output argument). The restrictions
for the predicates are described by binding patterns (modes, adornments), e.g. <
can be called for the binding pattern bb only (every letter in a binding pattern
corresponds to an argument position, b means bound, f means free).

A basic interface for relations is that it is possible to open a cursor (scan, iterator)
over the relation, which permits to loop over all tuples. We assume that for every
normal predicate p, there is a class p_cursor with the following methods:

• void open(): Open a scan over the relation, i.e. place the cursor before the
first tuple.

• bool fetch(): Move the cursor to the next tuple. This function must also be
called to access the first tuple. It returns true if there is a first/next tuple,
or false, if the cursor is at the end of the relation.

• T col_i(): Get the value of the i-th column (attribute). Here T is the type
of the i-th column.

• close(): Close the cursor.

For the push method, we will also need

• push(): Save the state of the cursor on a global stack.
• pop(): Restore the state of the cursor.

A relation may have special access structures (e.g. it might be stored in a B-tree
or an array). Then not only a full scan (corresponding to binding pattern ff . . . f) is
possible, but also scans only over tuples with a given value for certain arguments.
We assume that in such cases there are additional cursor classes called p_cursor_β,
with a binding pattern β. These classes have the same methods as the other cursor
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classes, only the open-method has parameters for the bound arguments. E.g. if p is a
predicate of arity 3 which permits especially fast access to tuples with a given value
of the first argument, and if this argument has type int, the class p_cursor_bff

would have the method open(int x).
Actually, some access structures can efficiently evaluate small conjunctions with

parameters, e.g. a B-tree over the first argument of p would also support a query
of the form p(X,Y,Z) ∧ X ≥ c1 ∧ X < c2, where c1 and c2 are integer constants
or bound variables. This is not in the focus of the current paper, but a realistic
system must be able to make use of such possibilities.

In addition, we need a possibility to create new tuples for predicates defined by
rules (IDB predicates). We assume that for each predicate p there is a class p with
a class method insert that creates a new tuple in p. Of course, it is possible that
the objects of class p correspond to individual tuples, but since we only use the
cursor interface, this is only one possible implementation.

3 Materializing Derived Predicates

The first, most basic method for implementing bottom-up evaluation is to explicitly
create a stored relation for every IDB-prediate. As an example, let us consider

p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

We assume that all columns in the examples have type int.
Of course, one option is to use a standard relational database, create a table for

every IDB predicate, and send SQL statements to the database to execute the rules.
But using a separate system for the management of facts causes performance penal-
ties. Furthermore, for the seminaive evaluation of recursive rules, there is no good
and efficient way to manage the deltas with SQL (the set of tuples newly derived
in an iteration). Another interesting problem is that a good sideways information
passing (SIP) strategy in the magic set method or selection function in the SLD-
Magic method needs already knowledge about existing indexes and relation sizes.
Therefore it is not a good idea to do query optimization in two completely separate
systems: The chosen SIP strategy/selection function more or less prescribes the
evaluation of the resulting rules. For instance, if one wants to use a merge join, less
“sideways information passing” is possible than with a nested loop/index join.

Therefore, one would do basic rule evaluation in the deductive database system
itself, although it might be possible to use parts of a standard relational system
(e.g. the storage manager). E.g. with a nested loop/index join, the implementation
of the above rule would look as shown in Figure 1.

Of course, the materialization method causes a lot of copying. E.g., disjunctions
must be expressed in standard Datalog with a derived predicate:

p(X, Y) ← q(X, Y).

p(X, Y) ← r(X, Y).

The materialization method would copy all q- and r-facts. This is especially ex-
pensive if the data values X and Y are large (e.g. longer strings). The problem can
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q_cursor q1;

q1.open();

while(q1.fetch()) {

int X = q1.col_1();

int Y = q1.col_2();

r_cursor_bff r1; // if there is an index on the first argument

// (and none for the binding pattern bbf)

r1.open(Y);

while(r1.fetch()) {

if(r1.col_2() == 5) {

int Z = r1.col_3();

p::insert(X, Z, 2);

}

}

}

Fig. 1. Materializing an IDB-Predicate: p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

be reduced by working only with pointers to the real data values. (but that might
not make optimal use of the memory cache in the CPU, because values are more
scattered around in memory).

4 Pull-Method

Of course, explicitly materializing every intermediate predicate needs a lot of mem-
ory. Therefore, it is a standard technique in databases to compute tuples only on
demand, or actually not even compute the entire tuple, but permit access to its
columns (in this way, possibly large data values do not have to be copied). In order
to get such “lazy” evaluation, one only needs to support the cursor interface for
each predicate. Let us consider again the rule

p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

If p is nonrecursive, and this is the only rule, and no duplicate elimination is needed,
the code would look as shown in Figure 2.

If duplicate elimination is needed, storing all tuples is necessary (unless the tuples
for the body literals are generated in a fitting sort order). One can then apply the
materialization method, or extend the pull-method by building a hash table of all
previously returned tuples, and adding a check that the derived tuple is new.

An important disadvantage of the pull-method is that it causes recomputation
if multiple scans over a predicate are performed. This does not only happen when
there are several body literals with the same predicate p, but also when a single p-
literal appears in the inner loop of a nested loop join. However, recomputation is not
necessarily something evil that must be avoided at any price. If the recomputation
is not expensive, as in the example with the predicate describing a disjunction, it
is a possible alternative.
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class p_cursor {

public:

void open()

{

q1.open();

q1_more = q1.fetch();

if(q1_more)

r1.open(q1.col_2()); // Assuming again index on first argument

}

bool fetch()

{

while(q1_more) {

while(r1.fetch()) {

if(r1.col_2() == 5)

return true;

}

r1.close();

q1_more = q1.fetch();

if(q1_more)

r1.open(q1.col_2());

}

return false;

}

int col_1() { return q1.col_1(); }

int col_2() { return r1.col_3(); }

int col_3() { return 2; }

private:

q_cursor q1;

r_cursor_bff r1;

bool q1_more;

};

Fig. 2. Pull-Method (Lazy Evaluation): p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

Recursion with the pure pull-method is not possible: If one tries to implement
recursion with the recursive opening of cursors, this leads to an infinite recursion
even for acyclic relations since no bindings are passed to the recursive call: Each call
does the same work again. Of course, it is possible to integrate standard seminaive
evaluation, but this simply means to use the materialization method at least once
in each recursive cycle.

5 Push-Method

It is also possible to apply the rules strictly from right to left, and move generated
facts immediately to the place where they are needed. In contrast to the materi-
alization method, a rule is not applied to produce all consequences in the current
state, but only a single fact is derived each time. This reduces the need for interme-
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diate storage and copying, which was also the main motivation for the pull-method.
But here the producer of facts is in control, not the consumer as in the pull-method.

Of course, usually several facts can be derived with a rule. Therefore, once a fact
is derived, one must store the current state of rule application on a stack for later
backtracking. Then control jumps to a rule where this fact matches a body literal.
In general there can be several rules that might use the produced fact, in which
case again a backtrack point is generated.

This method basically works only with rules that have at most one body literal
with IDB-predicate, because then matching facts for the other (EDB) body literals
are readily available when a fact for the IDB body literal arrives. The SLDMagic
method (Brass 2000) produces such rules as output of the program transformation,
therefore this case is practically interesting. Furthermore, when there are several
body literals with IDB-predicates, it is often possible to use the materialization or
pull method for the predicates of all but one body literal.

The push method is applicable to linear recursion, and that is in fact one of its
strengths (it can be very efficient in this case).

Let us explain how it works. First one creates a variable for every column of an
IDB predicate. Consider again the example rule:

p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

If q is an IDB predicate, and r is an EDB-predicate, and all arguments have
type int, we get:

int q_1, q_2;

int p_1, p_2, p_3;

In addition, there is a code piece for every body literal with IDB-predicate. Control
jumps to this code piece when a new fact for this predicate was derived. The
argument values of the fact are stored in the above variables. The purpose of the
code is to check whether new facts can be derived with this rule with the given
instantiation of the IDB body literal, and if yes, to store the arguments of the
derived fact in the corresponding variables and to jump to every place where the
newly derived fact is used. For the example rule, the code looks as shown in Figure 3
(there are in fact many optimization possibilities, discussed below). Rules with only
EDB-predicates in the body act as starting points. For instance, consider

q(X, Y) ← s(X, Y) ∧ Y ≥ 0.

Then for every s-fact, we would fill the variables q_1 and q_2 and jump to the place
where q-facts are used (label q:). Again, this loop is implemented with backtracking.

There are a number of optimization possibilities:

1. If q is non-recursive, pushing and restoring q_1 and q_2 is not necessary.
2. If the rule is non-recursive (i.e. not body literal depends on the predicate in

the head), pushing and restoring the open cursor r1 is not necessary.
3. It is also an optimization parameter how far one follows possible alternatives

before saving the computation state. In the example, it is checked that the
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q: r_cursor_bff r1;

r1.open(q_2); // Assuming index on first arg

while(r1.fetch()) {

if(r1.col_2() == 5) {

p_1 = q_1;

p_2 = r1.col_3();

p_3 = 2;

if(r1.fetch()) {

push_int(q_1);

push_int(q_2);

r1.push();

push_cont(CONT_q);

}

goto p;

}

}

goto backtrack; // if this is the last place where q is used

cont_q:

r1.pop();

q_2 = pop_int();

q_1 = pop_int();

do {

if(r1.col_2() == 5) {

p_1 = q_1;

p_2 = r1.col_3();

p_3 = 2;

if(r1.fetch()) {

push_int(q_1);

push_int(q_2);

r1.push();

push_cont(CONT_q);

}

goto p;

}

} while(r1.fetch());

goto backtrack; // if this is the last place where q is used

backtrack:

if(stack_empty()) return false;

switch(pop_task()) {

case CONT_q; goto cont_q;

...

}

Fig. 3. Push-Method: p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

cursor is not at the end before the variables are pushed. It would also be
possible to find first a tuple with the value 5 in the second column. If there
is none, it is not necessary to save the computation state.
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init:

s_cursor s1;

s1.open();

while(s1.fetch()) {

if(s1.col_2() >= 0) {

q_1 = s1.col_1();

q_2 = s1.col_2();

if(s1.fetch()) {

s1.push();

push_cont(CONT_init);

}

goto q;

}

}

return false; // if this is the last/only initialization rule

cont_init:

s1.pop();

do {

if(s1.col_2() >= 0) {

q_1 = s1.col_1();

q_2 = s1.col_2();

if(s1.fetch()) {

s1.push();

push_cont(CONT_init);

}

goto q;

}

} while(s1.fetch());

return false; // if this is the last/only initialization rule

Fig. 4. Push-Method: Initialization with q(X, Y) ← s(X, Y) ∧ Y ≥ 0.

4. Of course, if we would know that the first two columns are a key of the
relation r, it would not be necessary to search for another solution at all.

5. This technique to check first whether there really is another solution before
creating a backtrack point seems also important if q appears in the bodies
of several rules: Not seldom such rules are in fact mutually exclusive and
treat different cases. Of course, the best case is if we can detect this by static
analysis of the rules. If this is not possible, one could also follow the alternative
until the point where it is clear that it really gives another solution before
pushing the computation state.

6. The assignment of value 2 to p_3 could be done before the loop, if it is clear
that no other rule generating p-tuples can be executed before backtracking
returns to this rule. This will be the case if p is non-recursive. In this way, the
assignment is executed only once instead of for every generated tuple. The
same is possible for p_1 = q_1, because the first argument of the generated
tuple does not depend on the second body literal over which the loop runs.
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7. It is also not given that the i-th argument of predicate p must be stored in
a variable p i. In the example, if one chooses the same variable for the first
arguments of p and q, the assignment p_1 = q_1 becomes unnecessary.

Note also that the push method can be made to fit into the cursor interface: If for
instance p needs to be queried with a cursor, the above code is inside the fetch

method. The code jumps to label p: when a new p-fact is derived, the fetch-
method returns true to the caller. Each call to the fetch-method starts at the
label backtrack. In the open-method the backtrack-stack is initialized with a value
that causes a jump to the initialization (init).

6 Pull-Method with Passing of Bindings

In deductive databases, one normally uses first a program transformation like magic
sets, which is responsible for passing bindings from the caller to the callee, so
that only relevant facts are computed when the transformed rules are evaluated
strictly bottom-up (i.e. the entire minimal model of the transformed program is
computed). The “magic predicates” contain values for the input/bound arguments
of a predicate. Calls to these predicates are added as conditions to the rule body,
so that the rule can only “fire” when the result is needed.

With the magic set transformation, all calls to a predicate are put together in
one set. This is good, if there are several calls to a complex predicate with the same
input values: Then the answer is computed only once. But it is also bad, because
the results for different calls to a predicate are all in one set, from which one has
to select the result matching the current input arguments.

The Pull Method works already not completely bottom-up, but is controlled from
the caller (top-down) who requests the next tuple. Therefore it is very natural that
the caller passes all information he has about the required tuples. This would replace
the magic set transformation, but it is not exactly the same, because now there is
not one big magic set for a predicate (and a binding pattern), but for each call there
are given values for certain arguments. This has positive and negative effects: When
the call returns, one gets a tuple with the required values in the given positions, so
no further check/selection is necessary. This is especially important since the pull
method repeats computations, so non-matching tuples would simply be wasted. On
the negative side, if the same call appears more than once, the result is computed
repeatedly.

Passing bindings to called predicates fits nicely into the cursor interface, because
for EDB-predicates with special access structures, it is already possible. In this way,
this is also possible for IDB predicates.

For the materialization method and the push method, magic sets (or one of its
variants) works well. However, if one wants to combine the different methods in one
program (which is advisable, since each has its strengths and weaknesses), it would
be possible to treat the magic set specially and to initialize it each time with only
a single tuple.

Example code for the pull method with passing of bindings is available at
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http://www.informatik.uni-halle.de/~brass/botup/test2bind.cpp

7 Performance Evaluation

Test 1: Basic Comparison, Push Implementation Variants

We use the following example program:

p3(X, Z) ← p2(X, Y) ∧ q(Y, Z).

p2(X, Z) ← p1(X, Y) ∧ q(Y, Z).

p1(X, Z) ← p0(X, Y) ∧ q(Y, Z).

p0(X, Y) ← r(X, Y).

The EDB-predicates are defined as

q := {(i, i+1)| 1 ≤ i ≤ 5000}
r := {(i, i) | 1 ≤ i ≤ 5000}

The EDB-predicates are implemented by computation, so no time is needed for
loading facts from disk. The code assumes no index for the EDB-predicates, thus
always a full table scan is needed. The main program opens a scan over p3, reads
all tuples and adds the column values (so that no time is lost for printing). The
relations for the materialization method were implemented as a linked list.

The times listed under “Windows PC” were measured on a PC with Intel Core2
Duo CPU E8200 @ 2.66GHz with 4 GB main memory, running Windows XP Pro-
fessional, the programs were compiled with Microsoft Visual C++ 2008 Express
Edition with the standard settings for the “Release” configuration.

The times listed under “Linux Server” were measured on a system with four
Opteron 852 CPUs (2.6 GHz) and 16 GB memory running Ubuntu 8.04 64bit. The
used compiler is gcc 4.2.4 with -O2 code optimization.

The times listed under “Solaris Server” were measured on a SunFire V490 (4
dual core UltraSparc IV processors, 16 GB memory) running SunOS 5.10. The gcc
version was 3.4.6, -O2 optimization was used.

Method Windows PC Linux Server Solaris Server

Method 1: Materialization 515ms 380ms 430ms
Method 2: Pull 937ms 320ms 930ms
Method 3: Push (no opt.) 562ms 250ms 950ms
Method 3: Push (with opt.) 546ms 250ms 950ms
Method 3: Push (static) 578ms 220ms 1100ms
Method 3: Push (local) 515ms 250ms 490ms
Method 3: Push (main) 515ms 240ms 330ms

It is interesting that the optimal method in this case depends a lot on hardware
and compiler. It is also interesting that the materialization method is in fact very
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good here, whereas we assumed that the copying of values makes it slow (well, the
values were integers in this case, which are efficient to copy).

The “Push Method with optimizations” behaves not better than the version
without optimizations. The optimizations done were that the “push” and “pop” of
the cursors and argument variables was removed (since all rules are non-recursive),
and the variables p0_1, p1_1, p2_1, p3_1 were merged to one variable X (which
also saves some assignments, since the first argument of all predicates is the same).
However, merging the variables creates additional data dependencies, which might
hinder pipelined execution in the processor. In one test (on the Linux machine),
the “optimized version” even ran slower.

So the accessing of these variables (arguments of predicates and open cursors) is
especially critical. In the versions marked “no opt” and “with opt” these variables
are attributes of the class p3_cursor, of which the method fetch contains the main
code of the push method. In the line “Push (static)” these variables were declared as
“static”, i.e. class attributes. In the line “Push (local)” there were declared as local
variables (then it is important that they are restored from the stack before using, so
the optimization cannot be applied). The version “Push (main)” does not support
the cursor-interface, but has the code of the push-method in the main procedure
(however, the EDB-predicates q and r are accessed via cursors). All three, static,
local, and main version are without the optimizations of the push-method.

In this example, the passing of bindings does not occur: When p3 is called with
binding pattern ff, also the other IDB predicates p2, p1, p0 are called with both
arguments free. Therefore, Method 4 is the same as Method 2 in this case.

Just for curiosity, we tried this logic program with SWI-Prolog 5.6.64 on the PC.
The predicates q and r were defined as

q(I, J) :- between(1, 5000, X), X=I, J is I+1.

r(I, I) :- between(1, 5000, X), X=I.

Since the C++ programs had to do a loop over all q- and r-facts, it was necessary
to call the built-in predicate between with the last argument free. Since the C++
program accesses all p3-tuples, and adds the column values, the following main-
predicate seems comparable (the last condition always fails):

main :- p3(X, Y), Z is X+Y, Z < 0.

main.

The runtime in SWI-Prolog was 13.19s CPU time. B-Prolog 7.4 needs 2.55s CPU
time with between defined as

between(I, J, J) :- J >= I.

between(I, J, K) :- J > I, J1 is J - 1, between(I, J1, K).

(In SWI-Prolog, between is a built-in predicate.) XSB 3.1 needs 12.9s for the same
program. While this comparison is probably unfair for many reasons, it shows at
least that the method we investigate has a certain potential.

If tabling is switched on for all predicates in B-Prolog, it needs 0.86s, which is
comparable to our runtimes. However, since it presumably uses a hash table or
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other index to access the q- and r-facts, it has a big advantage on the join. Our
runtimes would also improve if q and r supported the binding pattern bf. XSB
with tabling needs 4.36s.

Test 2: Loop Order, Passing Bindings

Next, we use a very similar program, but with the inverse order of the predicates
in the body:

p3(X, Z) ← q(X, Y) ∧ p2(Y, Z).

p2(X, Z) ← q(X, Y) ∧ p1(Y, Z).

p1(X, Z) ← q(X, Y) ∧ p0(Y, Z).

p0(X, Y) ← r(X, Y).

The performance results are as follows:

Method Windows PC Linux Server Solaris Server

Method 1: Materialization 781ms 830ms 1950ms
Method 2: Pull >1h
Method 2: Pull (size 200) 24843ms 3400ms 19660ms
Method 3: Push (local) 531ms 290ms 340ms
Method 4: Pull+Bindings 609ms 260ms 330ms

As expected, the pull method behaves very badly in this case, because a lot of
recomputations are done (the predicates p0, p1, p2 are in the inner loop of a nested
loop join). For the problem size 200 (instead of 5000) it already needs more than
24s on the PC.

However, if one passes bindings to the predicates p0, p1, p2 according to the
binding pattern bf, the recomputation is avoided and the pull method has a good
performance.

The reason that the materialization method needs more time than for the first
program is that now the inner loop is over the predicate implemented with a linked
list, whereas the predicates q and r are implemented by computation (faster). If
the iteration is not equally fast, it is better if the faster one is in the inner loop.

The push method works very similar as for the first program. This is not a surprise
since it is controlled by the generated IDB facts, so not much changes here.

Test 3: Using Keys

We use the same program as in Test 2, but make use of knowledge of keys: If for q
and r, the first argument is declared as a key, a program analysis shows that this
also holds for p0, p1, p2, p3. That means that once a matching tuple is found in
the inner loop, one can stop that loop. So on average one can save about half of the
time. Of course, if one had special access structures (trees, hash tables), one could
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save much more, but that is a different topic. For the pull method with passing of
bindings, we tried two variants: One that kept the cursor interface, and one that
uses functions with result parameters.

The push method cannot make use of the keys mentioned above, therefore, one
would have the same runtime as in Test 2. However, it can use the fact that the
second argument of q functionally determines the first, and we have reported this
runtime in the table. Actually, the materialization method cannot use the key on q

and r, it uses only the knowledge about the keys of p0, p1, p2. The pull method
with passing of bindings uses the keys on the first arguments of q, r, p0, p1, p2. It
is interesting that the three methods differ in the keys that they can utilize.

Method Windows PC Linux Server Solaris Server

Method 1: Materialization 390ms 360ms 740ms
Method 3: Push (other key) 250ms 110ms 230ms
Method 4: Pull+Bindings 281ms 110ms 180ms
Method 4: Pull+Bind+Fun 265ms 110ms 190ms

Test 4: Using Ordering, Merge Join

The generators for q and r facts produce facts with a strictly ascending order of
values in both arguments (this also implies that both columns are keys). From
this, one can conclude that p0, p1, p2, and p3-facts are also produced in sorted
order (with all three methods). If one uses this knowledge, one can do a merge join
(without explicit sorting), which is extremely efficient. Already on the PC, all three
methods show 0ms time. Therefore, we increased the number of q- and r-facts to
1 million.

Method Windows PC Linux Server Solaris Server

Method 1: Materialization 765ms 710ms 1710ms
Method 2: Pull 93ms 10ms 90ms
Method 2: Push 78ms 20ms 80ms

Test 5: Disjunctions, Larger Tuples

The following program uses disjunctions and creates tuples with up to 7 columns:
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p1(A) ← q(A).

p1(A) ← q(A).

p2(A,1) ← p1(A).

p2(A,2) ← p1(A).

p3(A,B,1) ← p2(A,B).

p3(A,B,2) ← p2(A,B).

...

p7(A,B,C,D,E,F,1) ← p6(A,B,C,D,E,F).

p7(A,B,C,D,E,F,2) ← p6(A,B,C,D,E,F).

The (computed) predicate q returned 50000 tuples.

Method Windows PC Linux Server Solaris Server

Method 1: Materialization 1562ms 1220ms 4150ms
Method 2: Pull 390ms 20ms 100ms
Method 2: Push 453ms 300ms 400ms
Method 2: Push (with opt) 171ms 100ms 150ms

As expected, the large number of columns is bad for the materialization method.
The pull method performs very well, although there is a certain amount of dupli-
cated work: We implemented it in the straightforward way, which treats each rule
for a predicate in isolation. A more clever way would be to note that the body of
both rules of a predicate is identical and therefore a single scan over the body literal
suffices. The push method inherently does this, because it is controlled by the IDB
body literal. Therefore, the result tuples are also produced in a different order. In
deductive databases, the order of derived facts is not important, but as we have
seen, certain optimization possibilities depend on a specific order.

8 Related Work

There are still more variants of bottom-up evaluation proposed in the literature,
which we intend to include in our comparison in a future version of this article:

• In (Liu and Stoller 2003), an extreme form of materialization is proposed:
Not only facts about the derived predicates are explicitly stored, but also
intermediate results during rule evaluation, e.g. partial joins. This is combined
with a clever selection of data structures.

• In (Wunderwald 1995), a method similar to the push method is used, but
with a materialization of the derived predicates (our push method avoids this
materialization). Similar methods are also used to propagate changes from
base relations to materialized views.

In summary, implementations of bottom-up evaluation differ in what they materi-
alize (store in memory for a longer time), what they recompute, and the order in
which applicable rule instances are considered (and the duration: the pull method
has a rule instance “open” for a longer time).
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9 Conclusions

I am convinced that deductive databases can still become a serious competitor
to standard relational and object-relational databases for many practical projects.
Declarative programming has many advantages, and for single queries this is already
standard in the database field (SQL is a declarative language). Deductive databases
would lift the declarativity to the level of programs, but this is not as easy as it was
expected in the times when deductive databases were a hype topic. More research
is still needed.

Our long-term goal is to develop a deductive database system that supports step-
wise migration from classical SQL. Of course, the system will use our SLDmagic
method (Brass 2000) for goal-direction, but it also needs an efficient bottom-up
engine to run the transformed program. In this paper, we investigated several im-
plementation variants based on a translation to C++. It turned out that the optimal
method depends on the input program and also on the compiler and the hardware,
as well as keys and access structures for the relations. But the push method per-
formed constantly quite well. It has the restriction that it can work directly only
with rules having only a single IDB-literal in the body, but it can be combined
with other methods, or applied in several steps with different components of the
program. Also, the SLDmagic method produces rules with only one IDB-predicate
in the body.

The push method is also especially interesting because it seems very simple to
execute on parallel hardware: The stack of tasks is in fact a set (if one does not use
the optimizations). Since each task is small, the load balancing should be easy.

The next steps will be to continue the tests, also with parallel execution, with
other data structures for the relations, and with access to external memory. Then
we will also develop algorithms to find for a given logic program a good selection of
the above methods and of access structures for the relations (similar to cost based
optimization in standard relational databases).

The source code and performance results for the tests are available at

http://www.informatik.uni-halle.de/~brass/botup/

Results of future tests will also be posted on this page.
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