Chapter 15: The Hypertext Transfer Protocol (HTTP)

References:

- Erik Wilde: World Wide Web Technische Grundlagen. Springer, 1999, ISBN 3-540-64700-7, 641 Seiten.
- T. Berners-Lee, R. Fielding, H. Frystyk: Hypertext Transfer Protocol HTTP/1.0. RFC 1945, May 1996, 60 pages.
- R. Fielding et al.: Hypertext Transfer Protocol HTTP/1.1. RFC 2616, June 1999, 176 pages.
- J. Franks et al.: HTTP Authentication: Basic and Digest Access Authentication. RFC 2617, June 1999, 34 pages.
- David H. Crocker (Ed.): Standard for the Format of ARPA Internet Text Messages. RFC 822, August 1982, 47 pages.
- P. Wainwright: Professional Apache. Wrox Press, 1999, ISBN 1-861003-02-1, 617 pages.
- D. Kristol, L. Montulli: HTTP State Management Mechanism. RFC 2965, Oct. 2000, 26 pages.
- K. Moore, N. Freed: Use of HTTP State Management. RFC 2964, Oct. 2000, 8 pages.
- David M. Kristol: HTTP Cookies: Standards, privacy, and politics. ACM Transactions on Internet Technology (TOIT), Volume 1, Issue 2 (November 2001), Pages: 151 198
- S. Brass: Cookies. In R. Flynn (Ed.): Macmillan Computer Sciences. Macmillan, 2002.

After completing this chapter, you should be able to:

- explain what exactly happens when you click on a link in a web page.
 - You should be able to write HTTP requests and interpret HTTP responses. Why it is good to keep the TCP connection open for a short time after the response?
- explain how language and format are selected.
- explain authentication for protected pages.
- explain cookies including privacy problems.
- understand many of the configuration options for a web server.

Web robots are programs that "surf" on the web and try to download as many as possible web pages, e.g. for entering them into a search engine index.

- Often, the data that the server sends are simply the contents of a file stored on the server ("static contents").
- However, it is also possible that the data are computed by an arbitrary program that runs on the server ("dynamic contents").

The WWW server communicates with this program via CGI ("Common gateway Interface"). Alternative: "Servlets" written in Java.

- A program (e.g. a DBMS) can also directly have an HTTP interface.
- Even my printer can be controlled with a browser via a built-in HTTP interface.

more than two concurrent connections to the same server.

15 - 20

Proxies (2)

• The proxy then checks whether the requested page is in its cache.

It also tries to check whether the page is still current, see below.

- If yes, the proxy answers the request from its cache.
- If not, the proxy sends the request to the real server ("Origin Server") or another proxy.
- It forwards the response that it gets to the client, but in addition it saves the response in its cache (for future requests to the same URL).

• GET: The data stored under the given path/URI are requested.

This can be the contents of a file on the server, but the path/URI can also identify a program that computes the data. This depends on the server configuration, and even a simple URL that looks like a file name can actually be computed. Arguments/Parameters for the program can be appended after a "?" to the path. For a GET request, the program should not perform state changes on the server (GET requests can be cached in a proxy, not all actually reach the server).

• HEAD: Like GET, but only the headers should be delivered, not the data (body).

E.g. in this way one gets the date of last change, the file size, the media type (MIME type), etc. (meta data).

- **POST**: Data are transferred from the client to the server which should be assigned to the given URI.
 - Most often this is applied for data the user entered into a form. The URI then names a program that should process the data.
 - Also the GET method can be used for transfering form data to the server. But if the form data are stored on the server, and not only used for computing a result web page (e.g. query forms), POST is preferable.
 - ♦ However, the URI could also name a newsgroup in which the data/message should be posted.

• **POST**, continued:

- ♦ The URI can name also a database relation, in which the data should be inserted as new row.
- Or the URI names a document, to which the data should be attached as annotation.
- What exactly happens, depends on the configuration of the server (and the URI). HTTP does not prescribe a specific action.
- There are other methods (not always implemented), e.g. PUT, DELETE, OPTIONS.

- 5xx: Server Error.
 - ♦ 500: Internal Server Error.

This error code is e.g. returned when the CGI-program crashed (that was supposed to compute the response).

♦ 501: Not Implemented.

The request method is not known to the server.

♦ 502: Bad Gateway.

This is an error message generated by a proxy server. It got an invalid response from the original server.

♦ 505: HTTP Version not supported.

"Transfer-Encoding: chunked" must be specified.

- HTTP can not only be used for transmitting HTML documents, but also for arbitrary binary data.
- However, the browser must know what to do with the data (how to interpret/display them).
- Therefore, the header Content-Type contains the media type of the data sent in the body.

The standard specifies that any HTTP/1.1 message that contains a body should contain a Content-Type header. If this header is missing, the client is allowed to guess or treat the body as unknown binary data (application/octet-stream). Often the file extension in the URL helps, but e.g. .pl can be Perl or Prolog. Also, the URL might denote a program that computes the data, the data can then be of any type.

Media Types (3)

 E.g., all text/* types should be such that the client can show them directly to the user if it does not understand the subtype.

E.g. text/postscript is wrong, it must be application/postscript.

 Besides class and subtype, also optional parameters can be specified (separated by ";"), e.g.

text/html; charset=ISO-8859-4.

- Media types are registered by the IANA (Internet Assigned Numbers Authority) [http://www.iana.org].
- The current list of media types is available at [ftp://ftp.isi.edu/in-notes/iana/assignments/media-types]
- Non-registered media types should start with "x-".
- In Netscape (under UNIX), one can specify under

Edit \rightarrow Preferences \rightarrow Navigator \rightarrow Applications what to do with the different media types.

Media Types (6)

- E.g. one can specify that if a postscript file is received, it is stored in a temporary file and the ghost-script viewer is automatically started.
- It is also possible to extend the list of media types and to specify rules for guessing the media type from the file extension.
- Internet Explorer (under Windows) uses the Windows settings for file types.

See Tools \rightarrow Folder Options \rightarrow File Types in any Windows Explorer window. Internet Explorer is also available under UNIX, there it is specified in Tools \rightarrow Internet Options \rightarrow Associations.

Stefan Brass: Einführung in Datenbanken und das WWW Universität Halle, 2008

Apache selects one of the two language versions.

• However, the proposals are not yet complete.

image/gif has the quality factor 0.7.

have a slightly higher quality factor on the server.

Stefan Brass: Einführung in Datenbanken und das WWW Universität Halle, 2008

language, since many servers do not send a Content-Language header. There are various ways to specify the language in a HTML document, e.g. some servers might evaluate the HTTP-EQUIV meta tag which permits to specify arbitrary HTTP headers in the document itself (see chapter 17).

the internet is not affected by the modem compression.

• Vice versa, the server specifies the compression it has applied to the resource (if not identity):

Content-Encoding: gzip

Stefan Brass: Einführung in Datenbanken und das WWW Universität Halle, 2008

.htaccess files. Of course, also the name .htaccess is configurable.

Restriction by IP-Number (5)

- The settings in .htaccess apply to all files in the directory including all subdirectories in which they are not overridden.
- All the above configuration information is specific to the Apache server.

Stefan Brass: Einführung in Datenbanken und das WWW Universität Halle, 2008

 The form data should be transferred encrypted (via an SSL connection) if they contain passwords or credit card numbers.

Stefan Brass: Einführung in Datenbanken und das WWW Universität Halle, 2008

• HTTP is a stateless protocol: Each request is treated in isolation. There are no "sessions" with "login" and "logout".

This reduces the server load: After it has answered a request, it can completely forget about it. In contrast, sessions would need some memory on the server for the entire duration of the session (which can be long) in order to store state information.

 But this means that we get back to the times of batch processing: The request must contain all necessary data, there are no "interactive programs".
Except with Java/Javascript.

Cookies (1)

- However, in many online shops, one can put items into a "shopping cart", and pay at the exit.
- Obviously, an entire series of requests is linked together on the server and treated like a session.
- This is normally done with "Cookies", which are pieces of data that
 - $\diamond\,$ the server sends to the client, and
 - the client then basically includes with all future requests to the same server.

Stefan Brass: Einführung in Datenbanken und das WWW Universität Halle, 2008

Cookies (3)

- This means that the cookie should be sent to all web servers in the domain .altavista.com when accessing arbitrary pages (path=/).
- The browser then sends the data with the header Cookie: AV_USERKEY=AVSe36e6eef1b00004b0910ac0008d5f;
- In this way the effort to keep state information is moved from the server to the client.

But often the contents of a cookie is only a reference to state information that is actually kept on the server.

Cookies (4)

• Netscape stores cookies in ~/.netscape/cookies.

This file contains all information about cookies in clear text.

• Internet explorer stores them in C:\Windows\Cookies.

The files in these directory have lines that are terminated only with a linefeed (as under UNIX). But one can look at them e.g. with Wordpad or the MS-DOS edit. They contain the name of the cookie, the contents of the cookie, the domain of the originating web server, and some additional data (e.g. the expiration time). If several cookies are stored in the same file, they are separated by a line containing only an asterisk.

 While the contents of a cookie often has a meaning only to the server that processes it, somebody who has access to these files can get a good impression which web pages were visited.

Today, many servers send cookies, and the domain for which the cookie is intended is contained in the above files.

• Some cookies contain passwords which are then also contained in the cookie files of the browser.

So somebody who has access to your PC or can copy your cookie files might be able to pretend that he/she is you for certain websites. E.g. "one click" purchases depend on a cookie.

- Cookies were invented by Netscape.
- A preliminary specification is contained in

[http://www.netscape.com/newsref/std/cookie_spec.html]

- A newer specification is contained in RFC 2965. RFC 2964 treats privacy and security aspects.
- It is unclear why this name was chosen.

One reference says that "cookie" is a computer science term for an opaque piece of data that a client (e.g. of a library) holds and adds to future calls. I have also heard that an Apple operating system had the notion of a cookie jar, originating from a real cookie jar that the programmers kept on top of their computer containing little notes.

Cookies (7)

• Browsers can be configured to ignore cookies.

Then they do not store them and do not include them in future requests. E.g. under Netscape: Edit \rightarrow Preferences \rightarrow Advanced. IE: Tools \rightarrow Internet Options \rightarrow Security \rightarrow Custom Level.

• Some online shops do not work without cookies.

Often, unique numbers are also appended to URLs. However, this works only as long as the user does not leave the pages of the shop with the "back" button. Cookies are "more persistent". Also the server does not have to compute a different version of the web pages for each user if it uses cookies (which also makes proxies useless).

• One can delete cookies from time to time.

store, he/she is already known by name.

• Search engines might use cookies to count the number of distinct users they have.

As opposed to the total number of queries. This information is important for getting advertising customers. Also the search engine user number can be linked to all search terms the user has looked at, which can be used for putting advertisements on the web page that are interesting to the user. The search engine normally will not know name and address of the user, only a unique number (but see below).

of the user (only a unique number).

Privacy Problems (4)

- If the pages of the bookstore contain advertisements (maybe of the bookstore itself), the bookstore can pass its user ID to the advertizing agency.
- But if the corresponce between the user IDs of the bookstore and the advertizing agency is known, they can combine their data and know name and address together with a large number of visited web pages (that contain advertisements).

User Sessions (1)

- Although it is possible to implement something that looks like a user session with cookies (or unique numbers in URIs), one must be aware of certain differences.
- The server only "hears something" from the browser when one sends a request.

It does not help to let a web page with a cheap flight offer in one's browser window open. If the server did not get a request from the user for a certain amount of time (e.g. 20 min), it terminates the "session".

User Sessions (2)

• It is important that session numbers are not assigned sequentially or in another way easily predictable. Then a hacker could easily take over the "session" of a customer.

The hacker can send arbitrary values for cookies. E.g. he/she can open a session himself/herself, and then increment his/her session number by one.