
Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Integrity Constraints
for Microcontroller Programming

in Datalog

Stefan Brass and Mario Wenzel

University of Halle, Germany

ADBIS 2021 (Aug. 26, 2021)

Stefan Brass: Integrity Constraints for Microcontroller Programming 1/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Contents

1 Introduction

2 Microlog

3 Generalized Exclusion Constraints

4 Refuting Violation Conditions

5 Conclusions

Stefan Brass: Integrity Constraints for Microcontroller Programming 2/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

It all Started with my Interest in Fireworks . . .

Stefan Brass: Integrity Constraints for Microcontroller Programming 3/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Professional Fireworks are electrically ignited

Stefan Brass: Integrity Constraints for Microcontroller Programming 4/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

The Core of a Firing System is a Microcontroller

Stefan Brass: Integrity Constraints for Microcontroller Programming 5/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Microcontrollers
A Microcontroller is a small computer on a single chip.

E.g., the Amtel ATmega328P (∼ 2–3 e) contains
8-bit CPU (AVR instruction set, 32 registers, ≤ 20 Mhz)
32 KByte flash memory for the program
2 KByte static RAM
1 KByte EEPROM for persistant data
23 general purpose I/O pins

Minus 1, if one needs a reset pin, and 2 for an external osciallator.
Many pins have additional special functions besides digital input/output.

3 timers (1∗16 Bit, 2∗8 Bit) with pulse-width modulators
6 analog/digital converters (10 Bit resolution)
support for serial interfaces (UART/USART, SPI, I2C)

Stefan Brass: Integrity Constraints for Microcontroller Programming 6/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Arduino
Arduino is a platform for using microcontrollers.
It consists of

a family of boards with such microcontrollers,
E.g. the Arduino UNO R3 contains the ATmega328P (at 16 MHz).

a preinstalled boot loader on the microcontroller,
This permits to store programs from a connected PC via a USB interface.

an IDE for developing software for the Arduino in C,
IDE, boot loader and hardware design are open source.

hardware extension “shields” that easily connect to the
main board (e.g., for a display),
many software libraries,
an active community.

An Arduino UNO compatible board costs about 10 e.
Stefan Brass: Integrity Constraints for Microcontroller Programming 7/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Arduino Compatible Board

Stefan Brass: Integrity Constraints for Microcontroller Programming 8/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Arduino Clone with Additional Sensors and Display

Stefan Brass: Integrity Constraints for Microcontroller Programming 9/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Contents

1 Introduction

2 Microlog

3 Generalized Exclusion Constraints

4 Refuting Violation Conditions

5 Conclusions

Stefan Brass: Integrity Constraints for Microcontroller Programming 10/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Datalog for Microcontroller Programming
Declarative programs are often shorter than equivalent
programs in C (or assembler).

E.g., our blink example: 6 lines, similar program from the Arduino tutorial: 16.

Relatively simple language, also for non-experts.
Arduino boards are a nice device to be used in school.

Mathematically precise semantics based on logic makes
programs easier to verify.

A verification task is the main subject of this paper.

Simple semantics permits powerful optimizations.
We translated a subset of programs to extended finite state machines.

Data tables (e.g., for configuration data) can be easily written
as Datalog facts (data-driven architecture with small DB).

In another paper, we used a small home automation system as example.
Stefan Brass: Integrity Constraints for Microcontroller Programming 11/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

State Sequence
Microcontroller programs must act in time.

They specify an input-output behaviour, and the input changes over time.

Therefore, we use the natural numbers 0, 1, 2, . . . as an
infinite sequence of states (“logical time”).

Every predicate has an additional state argument (the first).
Rules are of two types:

Rules for deriving facts within a state:
All state arguments are filled with the same variable T .
Rules for deriving facts for the next state:
The body of the rule contains succ(T , S), the state
argument of all other body literals is T (current state),
and the state argument of the head literal is S (next state).

The variables T and S are reserved and cannot appear anywhere else.
Stefan Brass: Integrity Constraints for Microcontroller Programming 12/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Abbreviations (inspired by language Dedalus)
One must distinguish between

the abbreviated syntax used by the programmer (“Microlog”),
and the Datalog program after expanding the abbreviations.
This defines the semantics of the Microlog program.

The state argument is not shown in the abbreviated syntax.
Rules to infer facts about the successor state are marked
with @next appended to the head literal.

Facts with @init hold in state 0 (for setup), facts with @start in state 1.

Example (predicate that is true in all states):
Microlog: always@init.

always@next ← always.
Datalog: always(0).

always(S)← always(T) ∧ succ(T , S).
Stefan Brass: Integrity Constraints for Microcontroller Programming 13/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Interface Predicates for Input and Output
The Arduino libraries offer many C functions such as

void pinMode(uint8_t pin, uint8_t mode)
void digitalWrite(uint8_t pin, uint8_t val)
unsigned long millis(void)

For each such function f , there are two interface predicates:
call f (with the same arguments), and
ret f (with one additional argument for the return value).

Unless the return type is void.

If call f (c1, . . . , cn) is derived, f (c1, . . . , cn) is called, and
ret f (c1, . . . , cn, c) with the return value c is available in
the next state.
In Microlog, @call and @ret are used instead of the prefix.

And ? is written in the call for the return value (to make the arity equal).
Stefan Brass: Integrity Constraints for Microcontroller Programming 14/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Abbreviation for Real Time Delay
millis() returns the real time since the program was started.

Abbreviation:
p(t1, . . . , tn)@after(Delay)← A1, . . . ,Am.

Expanded to:
delayed p(t1, . . . , tn,From,Delay)@next ←

A1 ∧ · · · ∧ Am ∧ millis@ret(From).
delayed p(X1, . . . ,Xn,From,Delay)@next ←

delayed p(X1, . . . ,Xn,From,Delay) ∧
millis@ret(Now) ∧ From + Delay < Now .

p(X1, . . . ,Xn)@next ←
delayed p(X1, . . . ,Xn,From,Delay) ∧
millis@ret(Now) ∧ From + Delay ≥ Now .

millis(?)@call .
Stefan Brass: Integrity Constraints for Microcontroller Programming 15/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Example
On most Arduino boards, a LED is connected to Pin 13.

The following program turns the LED on for 1000 ms,
then off for 1000 ms, and so on (i.e. the LED blinks):

pinMode(13,#OUTPUT)@setup.
turn on@start.
turn off @after(1000) ← turn on.
turn on@after(1000) ← turn off .
digitalWrite(13,#HIGH)@call ← turn on.
digitalWrite(13,#LOW)@call ← turn off .

We use the notation #C to refer to constants defined in
the include-files of the library.

These constants are inserted into the generated code. We must assume that
different constants used in the same predicate argument are indeed distinct.

Stefan Brass: Integrity Constraints for Microcontroller Programming 16/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Contents

1 Introduction

2 Microlog

3 Generalized Exclusion Constraints

4 Refuting Violation Conditions

5 Conclusions

Stefan Brass: Integrity Constraints for Microcontroller Programming 17/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

The Task: Is memory sufficient?
Derivable facts are computed state by state.
The memory (RAM, e.g. 2 KByte) must contain:

All facts of the current state,
facts derived for the next state,
loop variables and other local variables of the implementation.

For program verification, it is necessary to show that there
will never be more facts than fit in the very limited memory.

We use a kind of constraints that ensures that certain
facts exclude each other, i.e. each state can contain only
one out of a larger set of facts.

For proving that memory is sufficient, we also need to look at argument types
(some contain only two different values) and compute an over-approximation
of the initial and the start state (at least the predicates that might occur in them).

Stefan Brass: Integrity Constraints for Microcontroller Programming 18/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Generalized Exclusion Constraints

A “Generalized Exclusion Constraint” (GEC) is a formula
of the form

← p(t1, . . . , tn) ∧ q(u1, . . . , um) ∧ ϕ,
where ϕ is either true or a disjunction of inequalities
tiν 6= ujν for ν = 1, . . . , k .

As usual in logic programming, the headless “←” simply
means “¬”, i.e. the constraint rule may never be applicable.

The constraint is logically equivalent to
ti1 = ui1 ∧ · · · ∧ tik = uik ← p(t1, . . . , tn) ∧ q(u1, . . . , um).

The head may also be false (if k = 0).

Stefan Brass: Integrity Constraints for Microcontroller Programming 19/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Relation to Other Constraint Types
GECs include keys and functional dependencies.
E.g., we cannot output two different values (high and low)
on the same pin in the same state:

← call digitalWrite(T,Pin,Val1) ∧
call digitalWrite(T,Pin,Val2) ∧
Val1 6= Val2.

While keys obviously help to reduce the number of facts that might be true
in a state, excluding conflicting usages of the same pin is also an important
verfication task in its own right.

Of course, known exclusion constraints fit in this framework:
← turn on(T) ∧ turn off (T).

Exclusion constraints (introduced by Casanova/Vidal in 1983, and
investigated further by Thalheim and Schewe) require that projections of
two relations are disjoint: πAi1 ,...,Ain

(R) ∩πBj1 ,...,Bjm
(S) = ∅.

Stefan Brass: Integrity Constraints for Microcontroller Programming 20/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

More Related Work
“Negative Constraints” have the form:

← p(t1, . . . , tn).
← p(t1, . . . , tn) ∧ q(u1, . . . , um). (with at least one ti = uj)

Such constraints were used by Chabin/Halfeld-Ferrari/Markhoff/Nguyen
in their work on validating data from semantic web providers (2018),
and by Caĺı/Gottlob/Lukasiewicz in their work on Datalog±.

Approaches also differ in the way the constraints are used:
Schewe/Thalheim modify specifications of operations in state
oriented systems such that they cannot violate constraints.

“Towards a theory of consistency enforcement”, Acta Informatica, 1999.

Chabin et.al. modify queries such that they ignore data
that violates the constraints.
Our task is to prove that all states occurring during
program execution do not violate the constraints.

Stefan Brass: Integrity Constraints for Microcontroller Programming 21/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Contents

1 Introduction

2 Microlog

3 Generalized Exclusion Constraints

4 Refuting Violation Conditions

5 Conclusions

Stefan Brass: Integrity Constraints for Microcontroller Programming 22/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Computing Violation Conditions (1)
We consider all possibilities to derive integrity violations.

E.g. consider the constraint:
← call digitalWrite(T,Pin,Val1) ∧

call digitalWrite(T,Pin,Val2) ∧
Val1 6= Val2.

A violation of this constraint means that two matching
call digitalWrite - facts are derivable.

Now we look at all rule pairs that might yield these facts.

Rules with matching head literals:
call digitalWrite(T, 13, #HIGH) ← turn on(T).

call digitalWrite(T, 13, #LOW) ← turn off (T).
Stefan Brass: Integrity Constraints for Microcontroller Programming 23/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Computing Violation Conditions (2)
We apply unfolding (an SLD resolution step) to the
constraint and the rules with matching heads:
← call digitalWrite(T, Pin, Val1) ∧

call digitalWrite(T ′, 13, #HIGH)← turn on(T ′).

call digitalWrite(T, Pin, Val2) ∧
call digitalWrite(T ′′, 13, #LOW)← turn off (T ′′).

Val1 6= Val2.

Unifier:
{T ′/T , T ′′/T , Pin/13, Val1/#HIGH , Val2/#LOW }

Result (one of many violation conditions):
turn on(T) ∧ turn off (T) ∧ #HIGH 6= #LOW .

The inequality #HIGH 6= #LOW is true and can be removed.
Stefan Brass: Integrity Constraints for Microcontroller Programming 24/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Meaning of Violation Conditions

Consider the computation of the minimal model of the
Datalog program:

I0 := ∅
I1 := TP(I0)

...
Ij := TP(Ij−1)

...

If a violation condition is satisfied in Ij−1,
the corresponding GEC is violated in Ij .

By applying the two rules, we get facts that make the body of the GEC true.

And conversely, if a GEC is violated in Ij ,
one of its violation conditions was satisfied in Ij−1.

Stefan Brass: Integrity Constraints for Microcontroller Programming 25/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Refuting Violation Conditions (1)
Now we must show that all computed violation conditions
are false in all interpretations that occur during the
computation of the minimal model.

We do this by applying the GECs.

We assume that the GECs were satisfied in Ij−1.
All GECs are certainly satisfied in I0 := ∅.

Based on that, we show that all violation conditions are
false in Ij−1.

It might be possible to use other knowledge in addition to show that the
violation conditions can never by satisfied. E.g., we might compute all facts
that are true in the “setup state” 0 (these do not depend on function results).

Then it follows that the GECs are satisfied in Ij .
Stefan Brass: Integrity Constraints for Microcontroller Programming 26/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Refuting Violation Conditions (2)
In the example, the violation condition

turn on(T) ∧ turn off (T) ∧ #HIGH 6= #LOW .

cannot be satisfied because of the GEC
← turn on(T) ∧ turn off (T).

In general, it is a bit more complicated, because the
violation condition can have any number of literals.

It is composed from the two rule bodies and the disjunction of inequalities from
the GEC that might be violated. We might also apply several GECs to prove
the violation condition unsatisfiable. See “match condition” in the paper.

But basically, the task of the programmer who wants to
use this verification method is to find a set of GECs that
can reproduce itself.

The system can show violation conditions that cannot be refuted yet.

Stefan Brass: Integrity Constraints for Microcontroller Programming 27/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Constraints in the Example
The functional property of the ret f -predicates could be
automatically assumed.

← ret millis(T , Now1) ∧ ret millis(T , Now2) ∧ Now1 6= Now2.

A library could add the constraints that two calls to
digitalWrite or pinMode for the same pin in the same
state are excluded.
There should be an abbreviation for specifying: For each T ,
at most one instance of the following facts is true:

turn on(T)
turn off (T)
delayed turn on(T , From, Delay)
delayed turn off (T , From, Delay)

This actually needs 8 GECs.
Stefan Brass: Integrity Constraints for Microcontroller Programming 28/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Required Memory: In total 8 facts
For the current state, there can be one fact about each of
the predicates:

call pinMode

call digitalWrite

call millis

ret millis

One of: turn on, delayed turn on, turn off , delayed turn off .

always (system predicate, should not actually be stored)

For the next state, two facts are derived:
One of: turn on, delayed turn on, turn off , delayed turn off .

always
Stefan Brass: Integrity Constraints for Microcontroller Programming 29/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Contents

1 Introduction

2 Microlog

3 Generalized Exclusion Constraints

4 Refuting Violation Conditions

5 Conclusions

Stefan Brass: Integrity Constraints for Microcontroller Programming 30/31

Introduction Microlog Generalized Exclusion Constraints Refuting Violation Conditions Conclusions

Conclusions
The technique is not actually limited to constraints with
exactly two literals.
I am still searching for nice constraint abbreviations.

I feel a bit ashamed that currently, the constraints must be specified on the
Datalog level, not the Microlog level. There also wouldn’t have been any
space in the paper for a solution . . .

Microlog Compiler (Mario Wenzel):
[https://dbs.informatik.uni-halle.de/microlog/]
Constraint Checker (Stefan Brass):
[https://users.informatik.uni-halle.de/˜brass/micrologS/]
There are other interesting types of constraints for this
application, e.g. one must call pinMode(Pin,#OUTPUT)
before digitalWrite(Pin, . . .).

Stefan Brass: Integrity Constraints for Microcontroller Programming 31/31

https://dbs.informatik.uni-halle.de/microlog/
https://users.informatik.uni-halle.de/~brass/micrologS/

	Introduction
	Microlog
	Generalized Exclusion Constraints
	Refuting Violation Conditions
	Conclusions

