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Chapter 1

Welcome to MiToBo!

ImageJ1 is a widely-used Java toolkit for image processing and analysis. Particularly in biological,

medical and biomedical applications ImageJ (Image Processing and Analysis in Java) has gained

large interest. ImageJ provides the user with a flexible graphical user interface, with a large

variety of basic built-in image processing operations and also with a huge collection of optional

plugins downloadable from the web. From a programmer’s point of view, however, the ImageJ

API provides less flexibility to support easy plugin and application development. Especially easy

data access and exchange between different modules or plugins below the graphical user interface

appear worth to be improved.

MiToBo, which is the Microscope Image Analysis ToolBox developed at the Martin Luther

University Halle-Wittenberg, tries to enhance ImageJ with regard to these aspects. On the

one hand MiToBo provides implementations of common image analysis techniques useful for

microscope image analysis. On the other hand, the implementation of these image processing

techniques and algorithms is completely separated from any interface accessing the implemen-

tations, e.g. like ImageJ plugins or commandline tools, which offers largest flexibility to both

users and programmers of the library at the same time.

MiToBo is build on top of Alida2 which is a library for automatic documentation of data anal-

ysis procedures. In Alida, which is an acronyme for Automatic Logging of Process Information

in Data Analysis, each data analysis pipeline is interpreted as a process of modifying given input

data by a series of operations to produce the desired output data. Accordingly, for implementing

data analysis and processing techniques the basic concept in Alida are ’operators’ which manip-

ulate data. It is straightforward to associate a selection of subsequent and/or parallel operator

calls with a directed graph data structure, where each operator is linked to a certain node of the

graph and input and output data is passed from one operator to another along the graph edges.

This graph together with the individual configuration parameters of all involved operators is a

sufficient base for lateron reconstructing all steps of data manipulation for a given result data

object. Alida allows to extract such ’history graphs’ explicitly and by this offers a powerful tool

for data analysis process self-documentation.

1http://rsbweb.nih.gov/ij/
2http://www.informatik.uni-halle.de/alida
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MiToBo adopts the concepts of Alida. Consequently, image analysis procedures are realized

in terms of operators which can be applied to data objects, e.g. images, regions or image primi-

tives like keypoints and lines, and yield certain results. A set of parallel or subsequent operator

calls results in a processing graph documenting the complete analysis process and, hence, re-

leases developers and users of image analysis algorithms from cumbersome manual parameter

logging and analysis documentation tasks.

MiToBo builds upon ImageJ image datatypes and does not interfere with ImageJ’s plugin

interfaces, i.e. allows to program ImageJ-compatible plugins based on the Alida operator con-

cept. Thus, in addition to the ImageJ interfaces which focus on plugin and script development,

MiToBo defines unique interfaces for the underlying image processing modules, i.e. operators,

in terms of input/output data and parameters, and also with regard to the way how opera-

tors can be invoked from other operators or user interfaces. This significantly improves data

exchange and operator handling, and establishes – besides the already mentioned concept of

auto-documentation – a powerful fundament for adding new sophisticated features to ImageJ.

One of these possible extensions which soon might gain significant interest is the graphi-

cal programming of image processing applications based on ImageJ and MiToBo. The operator

concept sets the first fundamental building blocks towards this direction since all operators

clearly document the types of their input data, output data and parameter objects. This is

essentially the most important basis for automatically combining operators to form processing

chains, including data compatibility checks and the verification of operator configurations.

Altogether MiToBo in combination with the underlying concepts of Alida aims to pro-

vide programmers of image processing applications with a maximum of usability and ImageJ

compatibility, while at the same time keeping the overhead for meeting the MiToBo operator

specifications as small as possible. We hope that the new perspectives MiToBo opens with its

concepts might be helpful for developers of image processing applications and by this further

extend ImageJ’s selection of valuable features.

1.1 Main Features: Operators, Plugins and History Graphs

Besides providing modern image analysis tools and algorithms for microscope image analysis

the overall goal of the MiToBo project is to ease microscope image analysis in terms of the

development of appropriate algorithms and flexible user interfaces. These interfaces should, of

course, not only be designed for experts, but also for researchers using image processing software

as a tool rather than developing their own algorithms. MiToBo builds on top of ImageJ which

has achieved large success and broad acceptance by researchers from many different disciplines

who need to solve their individual image analysis problems.

From the programmer point of view, ImageJ yields a suitable base for developing image

analysis tools in an integrated framework. The programmer does not need to take care of e.g.
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image display and zooming as ImageJ has answered such questions already. However, providing a

certain degree of usability and easy integration of new algorithms in terms of plugins is only one

side of the medal. On the other hand the underlying software structures and interfaces should

also provide a sufficient degree of comfort to the programmer. In particular, image processing

algorithms and user interfaces should be clearly separated from each other and data exchange

between different modules should be easy in terms of well-specified interfaces.

As ImageJ is not optimally designed with regard to some of these aspects, MiToBo does

not exclusively focus on the development of image analysis tools for microscope images, but

also optimizes underlying software in terms of data flow and data structures. In addition, self-

documentation of image processing pipelines is natively supported.

Based on the underlying concepts of Alida (Automatic Logging of Process Information in

Data Analysis) MiToBo defines an image analysis pipeline as a sequence of operations subse-

quently or in parallel applied to data that is handed over from operator to operator. Such a

pipeline may be viewed as directed graph structure, where the nodes are linked to different

operators and the data flow is indicated by edges between these nodes. From this interpretation

of image analysis in general, several concrete design issues are derived that are embedded in the

Alida core of MiToBo and provide users as well as programmers with enhanced image analysis

tools and an improved infrastructure.

Operator concept. The interpretation of image analysis pipeline as a sequence of operations

directly leads to the concept of operators implemented in MiToBo. All manipulations that are

performed on image data are done by operators. Vice versa operators are the only actors that

work on given data, modify the data or generate new data entities from given input data.

Accordingly, all image processing and analysis algorithms in MiToBo are implemented in terms

of operators with clearly specified input and output interfaces.

The operator concept is adopted from Alida. Technically Alida defines a common super-

class for data analysis modules denoted ’ALDOperator’ from which the MiToBo main operator

class MTBOperator is derived and from which all implemented MiToBo operator classes need to

be derived. Furthermore, the concept incorporates a formal description of the interface of an

operator, i.e. a unique formal specification of its inputs, outputs, and parameters by annotations.

In addition, there is only one possibility to invoke operators which is a single public routine to

be called from user side (refer to Chap. 6 for more details on operators).

Self-documentation and History Graphs. The Alida operator concept with its trans-

parent interface specifications allows a unified handling of operators in various contexts, e.g.,

with regard to graphical programming or automatic or semi-automatic code generation where

compatibility checks and operator calls have to be standardized. In addition, the restriction of

operator invocation to a single available method also serves as a basis for another sophisticated
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feature of MiToBo which is the fully automatic documentation of image analysis pipelines. Given

the interpretation of image analysis pipelines as sequences of operators, all that remains to be

done for process documentation is to log the calls of all operators as well as their input and

output data and save their parameter settings. Together with information about the order of

operator calls as for example represented in a directed graph data structure these data form a

complete protocol of the pipeline and allow for longterm documentation of analysis processes. In

particular, linked to specific result data objects, they allow to reproduce all results ever produced

during the course of algorithm development, testing, or experimental evaluation.

The concept of self-documentation is realized in Alida, thus, it is also an integral part of

MiToBo and directly embedded into the operator concept. Operators provide internal functional-

ity to store process data during the course of an analysis pipeline which later on can be extracted

in terms of a history graph file in XML format. Such a graph is associated with each data object

being the result of a certain operator or sequence of operations. Most of the time these objects

will be images, however, processing histories can also be associated e.g. with segmentation re-

sults like regions or contours as well as histograms or any other numerical data. See Figure 3.1

for an examplary visualization of such a graph.

Altogether MiToBo, the Microscope Image Analysis Toolbox, yields an extension to ImageJ,

which in particular provides programmers with enhanced functionality and unified interfaces for

developing their image processing algorithms. In addition, users benefit from MiToBo’s extensions

towards an integrated documentation of all analysis pipeline and compatibility to ImageJ as

underlying integrated software framework.

1.2 Installation

There are two common ways to work with MiToBo:

a) just using the plugins included in MiToBo for improving your work and easing image

processing tasks (Sec. 1.2.1),

b) using the MiToBo API to write operators, plugins and other image analysis applications

on your own (Sec. 1.2.2)

Depending on which use case you choose, and if you desire to compile MiToBo on your own or not,

the installation instructions differ in some parts. More details about the necessary installation

steps for both use cases can be found below.

1.2.1 Using MiToBo’s plugins and tools

If you are mainly intended to use the MiToBo plugins and commandline tools without writing

new code on your own, you just need to get the most recent binary archive including the MiToBo
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packages and plugins from the download section of the MiToBo website3. Once you got the

archive, please follow these steps:

1. extract the archive to a directory of your choice

2. copy the plugins’ jar called ’Mi To Bo.jar’ into your ImageJ plugins directory;

you can specify a custom plugins directory for ImageJ by passing the option ’-

Dplugins.dir=<DIR>’ to the Java virtual machine when starting ImageJ

3. include all other jars from the archive into your ImageJ plugins directory or into your

CLASSPATH variable

4. download external jars required by MiToBo to the same folder and, if necessary, include

them into the CLASSPATH; you will find a list of required jars on the webpage

5. start ImageJ and find the MiToBo plugins in the ’Plugins>MiToBo’ menu (starting with

prefix mtb )

Note that the archive also contains script files for Linux and Windows to run ImageJ including

the MiToBo plugins. After adaption of the file to the individual user’s environment, plugins

directory and CLASSPATH are set automatically, and ImageJ can be invoked by simply running

the scripts.

1.2.2 Using MiToBo’s operators and API

If you are interested in using MiToBo operators and its API directly in your own code to write

new image processing modules or flexible self-documenting plugins and applications there are

again two ways to do that. The more simple one is to consider MiToBo as a blackbox. In this case

the installation instructions are essentially the same as in Section 1.2.1, i.e. you mainly need to

make sure that the MiToBo jar file and all additional jars are in your CLASSPATH when you

compile and run code that uses MiToBo operators or datatypes.

Besides writing your own image processing applications based on the existing MiToBo pack-

ages and operators there might appear the necessity to extend the core or to adapt MiToBo’s

functionality to your specific needs. Hence, it might be favorable to be able to compile MiToBo

on your own. In this case you should download the MiToBo zip file including the source files from

the webpage of MiToBo. Extract the file to a directory of your choice (to which we will refer

to as root directory ’$MITOBO’ in the following). Explanations regarding the contents of the

zip file can be found in Appendix B. The sources can be compiled either using ’ant’ or within

integrated development environments like ’eclipse’.

3http://www.informatik.uni-halle.de/mitobo
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Compiling MiToBo using ’ant’. To compile MiToBo with the Java tool ’ant’, first of all enter

the directory ’$MITOBO/etc’. There you can find the file ’ant config templ.xml’ which you need

to copy to a file called ’ant config.xml’. Open the new file with your favorite text editor and

change all variable definitions according to your local system. Afterwards run ’ant’ from the root

directory of your MiToBo installation.

Compiling MiToBo using ’eclipse’. If you prefer to use an integrated development environ-

ment (IDE) like ’eclipse’ or ’netbeans’, you need to create a new Java project by importing the

MiToBo sources extracted from the zip file.

1.3 About this Manual

This manual is organized in a short introductory section and two main parts. The introductory

section – which you most probably have already read in the last few minutes – is dealing with

some general remarks and basic installation notes, while the two main parts provide more de-

tails. The first part is dedicated to users who are mainly interested in using MiToBo plugins or

commandline tools for their own work, e.g., to benefit from the automatic documentation capa-

bilites of MiToBo or to simply adopt provided image analysis algorithms for own image processing

tasks. The second part introduces the reader to some more internals of MiToBo, i.e. it provides the

reader with more details about the operator concept and how to use it with own code, more in-

formation about specific MiToBo data types and also about programming with MiToBo in general.

Note that only basics of the underlying Alida operator and self-documentation concept are pre-

sented. For more details about its functionality and technical implementation refer to the Alida

manual to be found on the Alida webpage http://www.informatik.uni-halle.de/alida.

If anything remains to be clarified or if you have further notes and comments, just write an

email to us at mitobo@informatik.uni-halle.de. We are happy to get in touch with you!
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Part I

MiToBo: The user’s view
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Chapter 2

MiToBo Quick Start Guide

MiToBo brings a couple of image analysis plugins, basically developed for microscope image

processing and analysis. After MiToBo was successfully installed (cf. Chap. 1.2) you can use the

toolbox plugins like any other ImageJ plugin. To make use of the self-documentation to its full

extent, it is indispensable to use the I/O plugins of MiToBo to open input data and save the

resulting output data. During the image analysis process, a processing pipeline is generated,

simply by using the included toolbox plugins. To get a complete self-documented history graph

of the image process (refer to Chap. 3 for more details), store the desired output data via the

provided Save Image MTB plugin.

For the basic use of MiToBo and its plugins, follow the steps mentioned below:

1. open the input data using the Open Image MTB plugin

2. use one or more plugins of the toolbox, to generate an image processing pipeline

3. save the resulting image(s) via the Save Image MTB plugin to store the output data and

get a full history of the image process

4. use chipory (see Appendix A) to view the history graph and get an overview of the pro-

cessing steps, the data flow from the input to the output data and the applied parameters

At the moment, self-documentation is only supported by using plugins from MiToBo itself. Maybe

it will be possible in the near future to use ImageJ plugins as well to get a self-documented image

analysis process, due to the developments in ImageJ 2.01. Furthermore, custom plugins can be

implemented with support for self-documentation (cf. Chap. 8).

1http://imagejdev.org/
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Chapter 3

History Graphs

One of the main features of MiToBo is its capability of self-documenting image processing

pipelines. The operator concept allows to get a detailed internal log of all data manipulations,

which can subsequently be used to convert the process history into a directed graph data struc-

ture denoted history graph in the following.

The MiToBo operator concept defines operators as the only places where data are processed

and manipulated. Each operator receives a number of input objects, which for example may

be images or segmentation results like regions. The behaviour of an operator is controlled by

parameters, where typical examples are the size of a structuring element or a threshold. An

operator produces output data, in particular images, but also for example numerical data, regions

or contours.

In MiToBo an image analysis pipeline consists of a set of different operators that are applied

to incoming data and produce result data. The order in which the operators work on the data

depends on the specific pipeline. The invocation of operators can be of pure sequential nature

or subsume parallel processing steps. In addition, nested application of operators is possible.

Given this principle each analysis pipeline and its data flow may be interpreted and visualized

as a directed acyclic graph (cf. Fig. 3.1 for an example).

A MiToBo history graph basically consists of operators and data nodes which are connected

by edges indicating the flow of data. Within the graph each operator is depicted as a rectan-

gle with the operator’s classname in the bottom line, as can be seen from Fig. 3.1 showing a

screenshot of chipory (see Appendix A). For each input and output data object the operator

features input and output ports which may be conceived as the entry or exit points of data

into and out of the operator. These ports are depicted as filled ellipses in light green (input

ports) and dark green (output ports), respectively. Each input port has exactly one incoming

edge, while an output port may be connected to multiple target ports, depending on where the

data is passed to. In Fig. 3.1 the result image ’resultImg’ produced in the MTBMedian operator

is e.g. handed over to the ActiveContours operator as well as returned directly to the calling
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operator CellSegmentation. Each port of an operator has an individual name indicating the

input or output object associated with the port. This allows to distinguish between ports if one

operator defines multiple input ports as is the case for the ActiveContours operator.

In addition to operators and ports there are also data nodes in the graph corresponding

to the creation of new data objects, e.g. when data is read from file, cloned or generated from

scratch. These are depicted as triangles filled with light grey. In Fig. 3.1 two data objects are

created outside of the processing pipeline as a result of reading images (at the top of the figure)

and are passed as input data objects to the Cell Segmentation plugin. Additionally, three more

images are created by the operators MTBMedian, MTBOtsuThresholding and ActiveContours

which in all three cases form the resulting data objects of these operators and are passed to the

outside via output ports.

Fig. 3.1 shows the history graph for the output object ’resultImg’ of the operator

Cell Segmentation, where the corresponding port is shown as a yellow ellipse at the bottom of

the figure. This history subsumes the calls of seven operators in total where some of these calls are

nested. The outmost operator is Cell Segmentation which is implemented as a MiToBo plugin,

indicated by the underscore in its name (cf. Chap. 8). This plugin calls the CellSegmentation

operator implementing the actual algorithms. For cell segmentation two input images are re-

quired whereas one of these images is median filtered by MTBMedian while the second one is fed

into the DetectNuclei operator. Inside of that operator first MTBOtsuThresholding is called,

and the binary result image is subsequently post processed applying MTBFillHoles. Its result

is handed back to the calling DetectNuclei operator and also directly propagated further back

to the CellSegmentation operator. This operator finally calls the ActiveContours operator

which generates one of the two result images of CellSegmentation. The second result image is

the median filtered image which is also returned to the calling plugin as mentioned above.

The history data is stored in XML format using graphml with some MiToBo specific ex-

tensions in a file accompanying the actual data object file. When reading and writing images

using MiToBo’s Open Image MTB and Save Image MTB plugins, history files are automatically

considered. For example, for an image stored in the file ’example.tiff’ its history data is au-

tomatically saved to the accompanying file ’example.ald’. The extension ’.ald’ indicates a

MiToBo processing history file and in fact is derived from Alida, which is responsible for process-

ing history in MiToBo. When later on reading the image using Open Image MTB, MiToBo’s open

operator checks for an accompanying file, and if one is found it is read and the corresponding

history data is linked to the image object. This allows to trace the processing history of an

object in the long run and even when the processing pipeline was interrupted by intermediate

savings to disk.

Note, the identity of images is not preserved in the processing history across file boundaries.

If two (or more) input images for the current top level operator, which is implementing the plugin

functionality (in Fig. 3.1 this would be the operator Cell Segmentation), are loaded from the
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Figure 3.1: A MiToBo history graph: the directed acyclic graph represents the application of nested

operators. Operators are depicted as rectangles, input and output ports as ellipses filled in light or dark

green, respectively. The grey triangles relate to newly generated data objects, and the yellow ellipse

indicates the result data object to which this history graph is linked to.
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same image file, both will nevertheless be displayed as different data nodes in the history. The

reason is that object identity is not – and maybe even cannot – be checked from the processing

history of former operations.
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Chapter 4

Important notes

Wrapper datatypes. Alida does only have some few restrictions on which data types are

allowed as input and output parameters of operators. These restrictions are due to the imple-

mentation of the port hash, which stores the connection of data objects to input/output ports

of operators. Further information can be found in Sec. 7.1. For the concept of the hash it is

essential that objects can uniquely be identified during the run of a processing pipeline. The

only unique object identifier in Java that can be used for this purpose is an object’s reference.

As a conseqeunce, input and output of operators may be of any Java class, which is uniquely

identifiable, which excludes only primitive data types, interned strings, and cached numerical

objects.

For Java data types not allowed as input and output data datypes wrapper classes have

to be used instead. MiToBo already implements some wrapper classes for frequently used native

datatypes. In particular, in ’MiToBo.datatypes’ you can find wrapper implementations for the

following Java data types:

• java.lang.Double

• java.lang.Integer

• java.lang.String

MTBImage and ImagePlus. Inputs and outputs of operators are usually individual objects

that can uniquely be identified given their reference, and that are independent of any other object

being manipulated within the same processing chain. One exception from this rule, however,

is given by image objects. In particular, although MiToBo defines its own image types, the

implementation of these types depends on ImageJ datatypes as far as possible. The main reason

for this is compatibility with the graphical user interface of ImageJ which should be accessible to

MiToBo plugins and operators without cumbersome casting. The detailed description of MiToBo’s
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’MTBImage’ is to extensive and not required in the following part. Thus it is postponed to Sec.

10.3.

As as consequence of these links between ’MTBImage’ and ’ImagePlus’ objects of both types

cannot be seen completely independent of each other. Conversely, in most cases an image object

present in ImageJ’s graphical interface will have an associated MiToBo image object in the

underlying processing chain, and vice versa. Thus, the same image might one time be handed

over to an operator as object of type ’ImagePlus’, and another time as object of type ’MTBImage’.

For proper documentation of the image’s processing history it is essential to associate all

operator calls on both instances of the physical image with the same underlying object in the

history database. To this end image objects are internally wrapped into a box object that

explicitly links corresponding objects of type ’MTBImage’ and ’ImagePlus’ to each other and

allows for correct tracing of the history independent of the concrete image object instance

passed to an operator. Please read Sec. 10.3 for proper use of images in MiToBo to prevent data

inconsistencies between corresponding ’MTBImage’ and ’ImagePlus’ objects.
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Chapter 5

Configuring MiToBo

Several of MiToBo’s plugins support individual configuration by the user. For example initial

files or directories the plugin should work on can be specified by the user. The probably most

common way of individual configuration is to pass specific path or flag settings to MiToBo plugins

by environment settings as outlined in the next section.

5.1 Environment variables and properties

MiToBo plugins support three different ways for user specific configuration:

a) environment variables

b) properties of the Java virtual machine specified with the option ’-Dproperty=value’

upon invocation of the JVM

c) ImageJ preferences as specified in the file /̃.imagej/Prefs.txt

This order reflects the priority of the three options, i.e. environment variables overwrite JVM

properties, and the latter ones overwrite ImageJ preferences. If for a certain plugin no configu-

ration values are provided by any of these three ways, default setting of corresponding internal

variables is completely plugin dependent.

In general there is no limitation for a plugin to define configuration variables. Usually they

should be properly documented in the Javadoc of the corresponding class. Some variables of

general interest, however, are listed below as almost all users might be interested in using them.

The naming of the environment variables and properties is also not strictly enforced. How-

ever, it is strongly recommended to adhere to the MiToBo naming convention as this helps to

avoid name conflicts. In MiToBo all variables start with prefix ’MITOBO’ (which is automatically

added to the variable name by the library fuctions). The second part of the name is usually the

plugin using the variable, and the third part is the actual variable.
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Example:

Imagine a plugin called ’Dummy Plugin’ which defines a variable ’Input’.

The environment variable that will be checked by the plugin is then denoted by:

MITOBO DUMMY PLUGIN INPUT

Following ImageJ property naming conventions the

corresponding preference and also the JVM property is denoted by:

mitobo.dummy plugin.input

Besides plugin specific variables there may exist variables of global interest shared by

different plugins. In their names the second part is simply missing, like in

MITOBO IMAGEDIR / mitobo.imagedir.

When defining such variables, however, special care has to be taken for ensuring that

such variables are interpreted the same wherever they are used. And even more important, it

needs to be thoroughly verified that the variables were not already defined elsewhere which

might result in strange behavior of certain plugins.

5.2 List of Important variables and properties

Below you find a table listing variables and properties of presumably common interest.

Plugin(s) Variable Meaning

MITOBO SVNROOT Path to local SVN checkout, optionally used

to get release information in self-documentation.

Open Image MTB MITOBO IMAGEDIR Directory where images are expected. For example

Save Image MTB checked if the following two variables are not set.

Open Image MTB MITOBO OPENDIR Directory where browsing starts the first time.

Save Image MTB MITOBO SAVEDIR Directory where browsing starts the first time.

Table 5.1: List of Important variables and properties
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Part II

The programmer’s view
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The following two Chapters are taken directly from the Alida Manual and included for

convenience of reading.
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Chapter 6

Alida operators

The heart of Alida’s concept are operators that implement all data analysis capabilites. In this

chapter we discuss the operator interface, how Alida operators can be invoked from self-written

code, and finally how new operators can easily be implemented.

6.1 Data processing and operators

Operators are the only places where data are processed and manipulated. Examples for such

data are, e.g., measurements and sets of sequences, for image analysis images or sets of regions

comprising a segmentation result. An operator receives zero or more input objects. Operators

with zero inputs are operators which for example create a data object for given parameters or

read data from file.

An operator produces zero or more output objects. The types of these objects are the same

as for input objects since in virtually all cases an output of one operator may act as the input

to other operators. An operator with zero output objects will, e.g., write data to disk.

Input and output of operators may be of any Java class, which is uniquely identifiable, which

excludes only primitive data types, interned strings and cached numerical objects.

The behaviour of operators is controlled or configured via parameters. All Java classes as

well as primitive data types are accepted as a parameter type. Typical examples for parameters

are the size of a kernel or structuring element, a filter mask, constants (or parameters) which

weight energy terms, step width of optimizers, or the maximal number of iterations for a gradient

descent algorithm.

In addition to parameters, input and output data, an operator may use supplemental argu-

ments, e.g., flags to control output or debugging information as well as for returning intermediate

results. By definition the setting of supplemental arguments must not influence the processing
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results returned as output data. Consequently, supplemental arguments are not documented in

the processing history.

Each input and output data, parameter, and supplemental argument is referred to as an

argument of the operator. The collection of all arguments is called the interface of the operator.

Each operator defines its interface by Java annotations of the member variables which constitute

the interface. Currently the annotation @Parameter as under developement for ImageJ Version 21

is used. The relevant features defined for the Alida operator concept are

• the type of the argument, e.g. PARAMETER,

• a boolean indicating whether the argument is required or not, and

• a textual explanation of the argument.

The application of operators may be nested as one operator may call one or more other

operators. At the top of this hierarchy we have commandline tools or plugins. Their input and

output as well as parameter settings are facilitated via files, GUIs, commandline or the console.

6.2 Using operators

To use an operator an object of the operator class needs to be instantiated, and input data as

well as parameters have to be set for this object. Subsequently the operator can be invoked using

the following method:

public final void runOp( )

throws ALDOperatorException,ALDProcessingDAGException

After return from that routine the results can be retrieved from the operator.

Important note: Do no invoke an operator by its operate() method as this will prevent

the processing history from being constructed. This would be only feasible from within the

package of the operator.

An example of how to use an operator is given in Fig. 6.1. First a new instance of the

operator is created and subsequently input arguments and parameters set. In this toy example

the member variables are mainly assigned directly, typically however setter methods will be

supplied by the operater, as is shown for the method setVerbose(). If all required input data

and parameters have been assigned for the operator object, it can be invoked calling its runOp()

method. This is the only legal way to invoke processing for an operator as this method takes

care of the construction of the processing history. Upon invocation of runOp() the validity of

parameters and inputs is checked. Validity requires for an operator that all required parameters

and input arguments have values different from ’null’. In addition the implementation of an

operator may impose further constraints by overriding the method

1http://imagejdev.org/
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1 CellSegmenation cellSegmenter = new CellSegmenation();

2

3 cellSegmenter.setVerbose( true);

4 cellSegmenter.sigma = this.sigma ;

5 cellSegmenter.maxIter = this.maxIter ;

6 cellSegmenter.gamma = this.gamma ;

7 cellSegmenter.nucChannel = this.nucChannel ;

8 cellSegmenter.pbChannel = this.pbChannel ;

9

10 cellSegmenter.runOp();

11

12 this.resultImg = cellSegmenter.resultImg;

13 this.medianImg = cellSegmenter.medianImg;

Figure 6.1: Example how to configure and invoke an operator.

public void validateCustom() throws ALDOperatorException

which, e.g., may restrict the admissible interval of numerical parameters. Subsequent to success-

ful validation the method

protected abstract void operate()

throws ALDOperatorException,ALDProcessingDAGException

is invoked. Each operator is supposed to implement this method as it does the actual work of

the operator. After return from runOp() the resulting output data can be retrieved from the

operator either directly accessing the member variables as in the example or by getter methods

as implemented by the operator. Note, that the value of the operator parameters and/or inputs

may have changed upon return from runOp() due to modifications in the operate() method.

runOp() may throw an exception if validation of inputs and parameters or data processing itself

fails.

There is also a second version of the method runOp() which takes an argument with name

hidden of type boolean. If hidden is true then the invocation of the operator is hidden from

the processing history. See Section 7.3 for more details.

An operator object may be reused to invoke processing several times, where inputs and/or

parameters may be changed between subsequent calls of runOp().
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6.3 Implementing operators

To supply a uniform interface for applying operators which automatically takes care of the

processing history each operator is implemented by extending the abstract class ALDOperator.

There are three issues which have to be taken care of when implementing an operator, namely

• the interface of the operator,

• the operation per se,

• constructors,

• and to indicate whether this operator prefers a complete processing history or a processing

history according to data dependencies.

which are described in the following.

Operator interface. As mentioned, the interface of an operator is constituted by the pa-

rameters as well as input and output data. In addition, an operator may use supplemental

arguments, e.g., to define variables to control output or debugging information as well as return

of intermediate results. The output of an operator is expected to be independent of the values

of these supplemental arguments. Hence, these are not stored in the processing history. The

supplemental arguments are described in analogy to parameters.

Each operator needs to define its arguments annotating the corresponding member variables.

Currently the annotation @Parameter as under developement for ImageJ Version 22 is used. For

Alida only the attributes required, type, and description are used. The field type allows to

specify the type (i.e. INPUT, OUTPUT, PARAMETER, SUPPLEMENTAL) of the argument, description

gives a textual explanation. For input arguments and parameters the field required defines

whether this argument is required or optional. Via the Java inheritance mechanism an operator

inherits all arguments defined in its super classes.

The value of each parameter is recorded upon invocation of an operator via its runOp()

method using the method toString() of the parameter class for later storage in the processing

history. Thus, it is recommended to supply an appropriate toString() method for data types

used as parameters to yield informative histories.

Before returning from runOp() additional documentation is performed for output objects

which are derived from the abstract class ALDData. This class essentially features a property list

which may be used to augment data object e.g. by a filename or URL which is the origin of this

data.

Fig. 6.2 shows an example how descriptors are defined. Here the operator defines one input

and one output object of type Image, and no parameters and supplemental arguments. In the

example the argument declarations are shown in lines 3− 9.

2http://imagejdev.org/2011/04/01/imagej-v200-alpha1
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1 public class MTBMedian extends MTBOperator {
2

3 @Parameter( label= ”inImg”, required=true,

4 type = Type.INPUT, description = ”Input image”)

5 Image inImg;

6

7 @Parameter( label= ”resultImg”,

8 type = Type.OUTPUT, description = ”Result image”)

9 Image resultImg;

10

11 public MTBMedian() throws ALDOperatorException {
12 }
13

14 protected void operate() throws ALDOperatorException {
15 System.out.println( ”MTBMedian::operate”);

16

17 //Image in = (Image)(this.getInput( ”inImg”));

18 Image res = new Image();

19 // no actual work yet, add your operator code here

20 resultImg = res;

Figure 6.2: Example how to define the interface and standard constructor of an operator, as well as the

empty operate() method.
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Operator functionality. The method operate() implements the functionality of the opera-

tor. All data passed into and returned from the operator have to be passed via the arguments of

the operator which may be set and retrieved with the appropriate setter- and getter-methods.

To invoke the processing within an operator, i.e. to run its operate() routine, the final method

runOp() needs to be called by the user of an operator.

Constructors. Each operator class requires to implement the standard constructor which

might be empty as given in the example, line 11. This is required for automatic code genera-

tion capabilites. Further convenience constructors may be implemented which additionally set

parameters and/or inputs.

Preference for graph construction Each operator may specify a preferred way to create

the processing history by setting its member variable completeDAG. The default mode is a

complete processing history, i.e. completeDAG == true, which works in all cases but potentially

includes further operator invocations as performed in the operate() method which do not

directly influence the values of the object for which the history is constructed. To generate a

leaner history graph the programmer of an operator may choose to set completeDAG to false,

see Section 7.3 for details.

Helpful tools for operator development There is a tiny commandline tool to query the

interface of a compiled operator by invoking, e.g.,

1 java de.unihalle .informatik.Alida.tools .PrintOperatorInterface

2 de.unihalle .informatik.MiToBo.morphology.ImgDilate

from the commandline which yields

1 Interface of ALDOperator: ImgDilate

2 Param <masksize> required, type: int

3 Input <inImg> required, type: MTBImage

4 Output <resultImg> required, type: MTBImage

5 Supplemental <verbose> not required, type: Boolean

Another commandline tool, de.unihalle.informatik.Alida.tools.GenerateGetterSetter,

prints standard getter and setter methods onto standard output which can easily be included

into the Java source code.
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Chapter 7

The processing history

Data processing pipelines in Alida build on the idea of operators that manipulate data ob-

jects. According to the specification of Alida operators (Chapt. 6), data objects that are to be

manipulated by a certain operator will have to be stored in member variables of the operator

annotated as operator parameters of type ’INPUT’. Result data objects of an operator will be

stored in member variables annotated as parameters of type ’OUTPUT’ from where the user of

the operator can access the result object for further processing tasks.

Logging the complete processing history of individual objects enforces Alida to link data

objects used as inputs or resulting as outputs from operator calls directly to the manipulating

operators. These links essentially form the base to later on build the history graph representation

for each object ever seen by any of the Alida operators during a processing chain.

7.1 Basics of the history concept

The key to log all operator calls and the corresponding operator configurations during each run

of processing pipelines is Alida’s port hash. Within this hash all objects participating in the

processing pipeline are registered. For each object a link to the relevant port of the most recent

operator invocation which used or produced this object is stored as a port object reference in a

weak hash map. This kind of hash map only holds weak references to objects, which allows the

Java virtual machine to destroy the objects if they are not referenced somewhere else. The port

hashmap allows to link input and output ports of operators as well as data ports according to

the data flow and to later on traceback the sequence of manipulations for each object.

The complete history of a data processing chain is only implicitly represented by links

between ports of ALDOpNodes and data ports. An ALDOpNode represents one specific invocation

of an operator and thus needs to store its current inputs and outputs. The ALDOpNode class defines

input and output ports for input and output objects of an operator. Data ports represent newly

created data objects that were not passed as input, e.g. when a new data object is allocated
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to store the results of an operator. Altogether these ports provide the functionality to establish

connections between new data and inputs and outputs of operators. The history of a data

object is build on request traversing the connections that are stored in Alida’s port hash. While

many different objects can be linked to a single processing chain, i.e. can be manipulated by

operators during one run of various operators, a single object has always its own individual

manipulation history. This history is given by a certain pathway within the manipulation graph

of the complete processing chain. The starting point of the object’s pathway is always the most

recent operator invocation which involved manipulations of the object. Consequently, the link

to the port associated with this operator call is the one stored in the port hash. Tracing back

the history from this port then allows to recover all object manipulations and build up the final

history graph.

Neither the programmer nor the user of an operator has to take care of the data stored

in the port hash or the correct logging of operator calls. Object registration and the update of

port links are done automatically each time an object is fed into an operator or taken out of an

operator as result. In particular, the runOp() method of ALDOperator takes care of all this and

handles the history data management internally.

The only situation when programmers get in touch with the processing history and the port

hash is when the processing history of an object is to be created explicitly, e.g. to be saved to

disc. While this is done automatically for some Alida data types which provide read and write

methods, there is still the need for programmers to take care of this for own data types not

providing appropriate read and write routines so far.

7.2 Accessing history data

At any point in time during processing the processing history of any object manipulated dur-

ing data manipulation is implicitly represented in the processing history graph. To access this

data and transfer the processing history from the implicit to an explicit representation, it is

possible to generate this history using the static method createGraphmlDocument of the class

ALDProcessingDAG. This creates the processing history associated with the object in a graph

data structure as generated by xmlbeans1. It is based on the XML schema definition of graphml2

with Alida specific extensions. Although intended for writing and reading the history to or from

file (see next paragraph) in the first place, this data structure may also be used to inspect the

processing graph as constructed directly from Java.

To store the processing history in XML format, to be more precisely in graphml format,

the class ALDOperator provides a static method to save the processing history of an object to

an XML file:

1http://xmlbeans.apache.org/
2http://graphml.graphdrawing.org/
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• public static void writeHistory( Object obj, String filename )

These files can then be opened, e.g. with chipory (see Appendix A), to discover details of the

analysis process. In subsequent processing chains, these histories can be read from such a file

using the following static method of ALDOperator:

• public static void readHistory( Object obj, String filename )

This reads the processing history of ’obj’ from the specified file. If such a history is present,

this old history is attached to the newly created data port initially linked to this object. Note

that invoking the readHistory method on an object will trigger the registration of the object

in the port hash if this did not take place before.

7.3 Different modes of processing graph construction

There are two mechanisms to influence which operator invocations are to be included or excluded

from a processing history. One is hiding of operator invocations by the user of an operator, the

other to influence the explicit construction of the processing graph to a certain extent by the

programmer of an operator. We discuss both issues in turn in the rest of this section.

Hiding of an individual invocation of an operator is accomplished using runOp(true) as

mentioned in Section 6.2. This effectively excludes this invocation from any processing graph for

an object which indeed depends on this operator invocation. One example where this might be

adequate is a tool for interactively choosing and applying a global threshold on an image. Here a

thresholding operator will be successively invoked for varying thresholds until the user is satisfied

with the result. If all operator invocations would be documented in the history graph it would be

cluttered with intermediate thresholding operations. This hiding of operator invocation can be

ignored as the processing graph is created using the static method createGraphmlDocument()

of the class ALDProcessingDAG as described in the class documentation, e.g. for debugging

purposes.

The second mechanisms to influence the processing graph is somewhat more involved.

If the mode ALDProcessingDAG.HistoryType.COMPLETE is used when constructing the his-

tory via ALDProcessingDAG.createGraphmlDocument(), for each operator invocation (i.e. each

ALDOpNode) included in the processing graph recursively all nested calls of further operators are

included into the graph unless the invocation was hidden. For example, in the processing graph

shown in Fig. 3.1 including the ALDOpNode for CellSegmentation will recursively also include

the nested operator invocations of MTBMedian, ActiveContours, and DetectNuclei. This will

be the case intended of the object, for which the history is to be generated. Considering the

object returned by CellSegmentation via the output port resultImg this is adequate by no
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means, as is evident from the data flow depicted. However, the situation is different with regard

to the object returned via the output port medianImg as its value does not depend on the manip-

ulations of the operators ActiveContours and DetectNuclei. In this case only the dependency

as implied by the data flow will be reflected in the processing graph generated using the mode

ALDProcessingDAG.HistoryType.DATADEPENDENCIES, i.e. the history will only include the in-

vocation of MTBMedian, but not ActiveContours and DetectNuclei. A typical example where

data dependencies are not suited to yield a sensible history graph is the operator MTBMedian.

The data dependencies indicate a dependency of the output object from an internally created

data port, however does reflect the dependency of the input image. This is indeed not possible if

MTBMedian is to not modify its input data and thus returns the filtered image in a newly created

data object. This example shows, that the generation of a processing graph will yield a sensible

history in very rare cases using the mode DATADEPENDENCIES.

Therefore a third mode of generation is available, namely OPNODETYPE. In this case when

constructing the processing graph each ALDOpNode decides whether all its directly nested oper-

ator invocations are to be considered, or only those which are connected via data dependencies.

This decision is made by the programmer and the user of the operator by appropriately setting

the protected member variable completeDAG. If this variable is set to false for the operator

CellSegmentation and the history constructed in mode OPNODETYPE, the history will include

all three nested operator invocations if the history is constructed for the object return via the

port resultImg, but only the invocation of MTBMedian for the object returned via medianImg.

The same is true, if the history is not constructed for one of these two object but for another

object which depends on one of them.

In the abstract class ALDOperator the member completeDAG is set to true, thus a complete

history is the default. To be on the safe side the programmer of an operator may choose this

default mode with the only penalty to potentially generate history graphs with non important

operator invocations. If she or he is certain that the data dependencies of the operator yield all

(intended) operator invocations setting the variable to false may yield leaner processing histories.

7.4 Software version handling

Documenting the processing history for data items requires not only to log all operator calls

and their parameter settings, but also to remember the software versions of the operators.

Consequently the method runOp() retrieves upon invocation the current software version of an

operator. Indeed, where this version is queried from needs to be specified by the user. Popular

options are for example SVN, CVS or git repositories, but there are lots of alternatives as

well. Alida implements a dynamic framework allowing for flexible runtime configuration of the

retrieval procedure which is outlined below.

The basis for runtime configuration in Alida is the abstract class ALDVersionProvider

which all version provider classes have to extend. ALDVersionProvider mainly defines the
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method

public String getVersion()

returning a string object containing the software version. The concrete implementation of

ALDVersionProvider to be used for version information retrieval can be specified at runtime

by JVM properties or environment variables (cf. Section 5). In particular, use the property

alida.versionprovider class to specify the desired class, e.g.:

-Dalida.versionprovider class= \
de.unihalle.informatik.Alida.operator.ALDVersionProviderCmdLine

Of course, the class passed via this option needs to extend ALDVersionProvider. If this is not

the case a warning is printed to the standard error channel and no version information is added

to the generated documentation.

Internally, a factory named ALDVersionProviderFactory extracts the desired implementa-

tion from the given environment variables or JVM properties and creates corresponding ob-

jects. Note that by default no version provider is initialized, i.e. the version is always set

to ”Unknown Release”. Anyway, as default implementation Alida supplies the programmer

with class de.unihalle.informatik.Alida.version.ALDVersionProviderCmdLine which al-

lows reading version data from the environment. The class extracts version data from another

JVM property named version. Hence, envoking Alida processes with the following options,

-Dalida.versionprovider class= \
de.unihalle.informatik.Alida.operator.ALDVersionProviderCmdLine -Dversion=4711

will insert the version ID ”4711” into extracted history graphs.
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Chapter 8

Implementing plugins

The ImageJ plugin concept is a very powerful concept to access the full ImageJ and third-party

APIs. Based on this concept, the whole MiToBo API is also accessible via plugins. This provides

a huge range of flexibility to use common plugins as well as special developments and algorithms

for image analysis and processing.

The implementation of plugins in MiToBo is very easy and is effected according to the conventions

of ImageJ. Writing your own plugins is possible in one of the following two ways:

A) as standard ImageJ PlugIn / PlugInFilter

B) as MiToBo MTBOperatorPlugInFilter

Important note: For both ways the ImageJ rules take effect. Only .class and .jar files in the

’$MITOBO/plugins’ folder with at least one underscore in their name will be accessible from

the graphical user interface of ImageJ.

8.1 Implement PlugIn or PlugInFilter

The implementation of plugins in this way follows the same rules as mentioned in the standard

ImageJ plugin development1. In principle two types of plugins are supported:

PlugIn - do not require an image as input

PlugInFilter - require an image as input

Both types of plugins can easily be combined with MiToBo operators (cf. Chap. 6) and data

types (cf. Chap. 10). To use an operator, a new operator object has to be instantiated and input

data and parameters have to be set. Then the operator can be invoked by its runOp() method

where the results can be retrieved from the operator object after returning from this method.

Figure 8.1 shows a small example plugin using the MTBMedian operator.

1http://www.imagingbook.com/index.php?id=102
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1 import ij.ImagePlus;

2 import ij.plugin. filter .PlugInFilter ;

3 import ij.process.ImageProcessor;

4 import de.unihalle.informatik.MiToBo.operator.∗;
5 import de.unihalle.informatik.MiToBo.datatypes.images.MTBImage;

6

7 public class MTB Median IJPlugin implements PlugInFilter {
8 // plugin input image

9 private MTBImage inputImage;

10

11 // Implementing standard ImageJ setup method.

12 @Override

13 public int setup(String arg0, ImagePlus imp) {
14 // create a new MTBImage data type object from the ImagePlus input image

15 this.inputImage = MTBImage.createMTBImage(imp);

16 // allow 8 and 16−bit gray value images

17 return DOES 8G + DOES 16;

18 }
19

20 // Implementing standard ImageJ run method.

21 @Override

22 public void run(ImageProcessor impIP) {
23 // create a new median operator object and set the input via its

24 // constructor

25 MTBMedian medianOp = new MTBMedian(this.inputImage);

26 // set input and parameters explicit if no constructor exists

27 // MTBMedian medianOp = new MTBMedian();

28 // medianOp.setInput( ”inImg”, this.inputImage);

29

30 // invoke the operator

31 medianOp.runOp(false);

32 // get the output of the operator, in this case the filtered image

33 MTBImage resultImage = medianOp.getResImage();

34 // display the filtered image via ImageJ

35 resultImage.show();

36 }
37 }

Figure 8.1: Example how to implement a standard ImageJ plugin using an MiToBo operator.
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This way of plugin implementation should be used if the plugin uses only operators to modify

and create data, i.e. that the processing history reflects the complete chain of operations.

Important note: Using this kind of plugin implementation, the plugin itself is not included in

the history graph, but nested operators are included. To also include the plugin itself, it needs

to be implemented as operator.

8.2 Implement MTBOperatorPlugInFilter

Here a plugin can be implemented as MiToBo operator (cf. Chap. 6). The plugin extends the

abstract class MTBOperatorPlugInFilter, which implements the PlugInFilter class of

ImageJ, and overwrites the setup() and operate() method, as well as the ImageJ

PlugInFilter run() method. Being an operator, the plugin must define its operator de-

scriptors (cf. Sec. 6.3).

Important note: An input image of the plugin is implicitly defined in the

MTBOperatorPlugInFilter class. By default, this input image is stored by an MTBImage

object reference named mtbInput.

The input data and parameter settings of the plugin are located in the run() method.

To use other operators inside the plugin, these operators should be instantiated in the

operate() method and invoked by their runOp() method. Afterwards, the results can be

retrieved from the operators and the plugin output can be set. Finally these additional operators

are called via the runOp() command within the plugin run() method. After returning to run()

the results of the plugin can be processed or displayed.

Figure 8.2 shows a small implementation example of a plugin, implemented as MiToBo operator.

To show only the basic implementation, the plugin only passes its parameters to the median

operator.

Important note: Using this way of implementation, the plugin appears as an operator

in the history graph.

This way of implementation should be used, if the plugin passes its parameter to more

than one operator or modifies the input image in some other way.
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1 import ij.ImagePlus;

2 import ij.process.ImageProcessor;

3 import de.unihalle.informatik.MiToBo.operator.∗;
4 import de.unihalle.informatik.MiToBo.datatypes.images.MTBImage;

5 import de.unihalle.informatik.MiToBo.exceptions.∗;
6

7 public class MTB Median MTBPlugin extends MTBOperatorPlugInFilter {
8

9 @Parameter(label=”resultImg”, type=Type.OUTPUT,

10 description=”Filtered image”)

11 private MTBImage resultImg;

12

13 /∗∗
14 ∗ Standard constructor.

15 ∗/
16 public MTB Median MTBPlugin() throws MTBOperatorException {
17 // nothing to do here

18 }
19

20 /∗∗
21 ∗ Implementing standard ImageJ setup method.

22 ∗/
23 @Override

24 public int setup(String arg0, ImagePlus imp) {
25 // create MTBImage from ImagePlus or retrieve MTBImage that is connected with ImagePlus

26 // and set as input image

27 this.mtbInput = MTBImage.createMTBImage(imp);

28

29 // allow 8 and 16−bit gray value images

30 return DOES 8G + DOES 16;

31 }
32

33 @Override

34 protected void operate() throws MTBOperatorException,

35 MTBProcessingDAGException {
36

37 // maybe call some other operators

38

39 // crate a new median operator object and set the input via its constructor

40 MTBMedian medianOp = new MTBMedian(this.mtbInput);

41 // invoke the operator

42 medianOp.runOp(false);

43 // set plugin output from median filter result

44 this.resultImg = medianOp.getResImage());

45 }
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46 /∗∗
47 ∗ Implementing standard ImageJ run method.

48 ∗/
49 @Override

50 public void run(ImageProcessor impIP) {
51 try {
52

53 // call the operate method to call additional operators or operations

54 this.runOp(false);

55 // display the filtered image via ImageJ

56 this.resultImg.show();

57 } catch (MTBOperatorException e) {
58 e.printStackTrace();

59 } catch (MTBProcessingDAGException e) {
60 e.printStackTrace();

61 }
62 }
63 }

Figure 8.2: Example how to implement a MiToBo MTBOperatorPlugInFilter using an MiToBo operator.
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Chapter 9

Implementing commandline tools

The strict separation of code and interfaces in MiToBo allows operators to be easily accessed

from different kinds of programs and user interfaces. Besides writing plugins which is actually

the standard in ImageJ (cf. Chap. 8), the implementation of commandline tools is also straight-

forward in MiToBo.

Implementing a commandline tool can be done in either of two possible ways:

a) implementing a standard Java class with main() routine that directly uses operators

b) implementing the commandline tool itself as an operator where the main() routine just

instantiates, configures and calls the actual commandline tool object

The first option a) is reasonable if the commandline tool does nothing more than calling cer-

tain operators. In particular, the commandline tool should not add any additional functionality

related to image processing to the operators’ functionalities. Contrary, if the commandline tool

itself provides functionality in addition to the operators, it is advisable to implement the com-

mandline tool itself as an operator following option b) to ensure proper self-documentation.

In practice commandline tools will most of the time just hand over commandline arguments

to existing operators without adding new functionality by themselves, i.e. option a) is more

common. Accordingly, below we will discuss the implementation of an example commandline

tool for image thresholding which follows that strategy.

Part of the implementation is shown in Fig. 9.1. The class of the commandline tool basically

contains the main() method which handles commandline arguments and operator calls directly.

Commandline argument parsing is in this case done using the external library jargs1 which is

not part of the MiToBo distribution.

At the top of the main() method some commandline options are defined which directly

relate to parameters of the thresholding operator invoked later. Subsequently the actual parsing

1http://jargs.sourceforge.net/
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package cmdTools.segmentation;

import jargs.gnu.CmdLineParser;

/**

* Commandline tool for thresholding plain images, stacks and ...

*/

public class ImageThresholdTool {

public static void main(String [] args) {

CmdLineParser parser = new CmdLineParser();

CmdLineParser.Option oThreshold = parser.addDoubleOption(’t’,"threshold");

CmdLineParser.Option oFGValue = parser.addDoubleOption(’f’,"fgvalue");

CmdLineParser.Option oBGValue = parser.addDoubleOption(’b’,"bgvalue");

// parse arguments

try {

parser.parse(args);

}

catch ( CmdLineParser.OptionException e ) {

...

}

// remaining arguments ok?

String[] otherArgs = parser.getRemainingArgs();

if (otherArgs.length != 2) {

...

}

// retrieve options

Double threshold = (Double)parser.getOptionValue( oThreshold, null);

Double fgValue = (Double)parser.getOptionValue(oFGValue, Double.POSITIVE_INFINITY);

Double bgValue = (Double)parser.getOptionValue( oBGValue, Double.POSITIVE_INFINITY);

try {

ReaderImageMTB reader = new ReaderImageMTB(otherArgs[0]);

reader.runOp(null);

MTBImage inImg = reader.getResultMTBImage();

ImgThresh thresOp = new ImgThresh();

thresOp.setInputImage(inImg);

thresOp.setThreshold(threshold);

thresOp.setFGValue(fgValue);

thresOp.setBGValue(bgValue);

thresOp.runOp(false);

MTBImage resultImg = thresOp.getResultImage();

WriterImageMTB writer= new WriterImageMTB(otherArgs[1], resultImg);

writer.runOp(false);

} catch ( Exception e) {

...

}

}

}

Figure 9.1: Example code of a commandline tool using MiToBo operators.
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is done and the values of the options are copied to local variables. The try-catch block in

the lower part of the listing contains the calls of MiToBo operators. First the input image is

loaded using the operator ReaderImageMTB. Subsequently the thresholding operator ImgThresh

is initialized and invoked. While for the ReaderImageMTB class a convenience constructor defining

all required inputs and parameters is available, in case of the ImgThresh class all configuration

settings have to be done explicitly. After running the thresholding operator the last three lines

in the try-catch block show how the result data is retreived from the operator (using its

getResultImage() method) and then saved to disk by using the operator WriterImageMTB.

Note that the history graph associated with the output image will not contain any link to

the commandline tool itself as it is not implemented as an operator. The history of resulting

image that is written to disk will rather include only all explicit operator calls.
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Chapter 10

MiToBo data types and their

implementation

MiToBo defines a set of its own data types. Besides new image data types improving the ImageJ

image classes, these include for example regions and contours and some other data type primitives

frequently used with regard to image analysis applications. Most data types can be found in the

package ’mitobo.datatypes’ and its subpackages. To allow for easy identification of the data

types the classnames of the data types in MiToBo always start with ’MTB’, like in ’MTBRegion2D’

or ’MTBImageDouble’.

There are three main reasons why MiToBo implements its own data types and not simply

builds on top of the data types provided by ImageJ. The first reason is given by the fact that

the handling of data objects in ImageJ is solved only in a rudimentary fashion, at least with

regard to the API. As there are only some few explicit datatypes apart from images in ImageJ,

data access or exchange is often cumbersome. Accordingly, MiToBo tries to enhance the usability

and flexibility of image processing modules by defining its own data types, and by this tries to

overcome some limitations nowadays present in ImageJ.

The second reason for introducing new data types is specific to MiToBo and its feature of

self-documentation (cf. Chapt. 1.1). While MiToBo operators in principal support almost all

available kinds of objects as inputs and outputs for operators, some few object types remain

that cannot be handled natively within our concept. Among those data types are for example

Java’s wrapper classes like ’Integer’ and ’Double’, and – more generally speaking – all classes

that implement the comparison of objects based on equality of object values. If objects of these

kinds should be used as operator inputs or outputs this can only be done by wrapping them

in data types providing object identification independent of the current value. Accordingly, for

some basic and frequently used data types MiToBo implements such data object wrappers.

Another aspect regarding self-documentation is the fact that sometimes proper documenta-

tion of operator configurations requires more than just logging an input or output object’s type
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and current value. There might be other object parameters that are worth to be documented,

e.g. like certain image-specific properties in case of images. To support the documentation of such

object properties MiToBo defines a basic data type class supporting management and automated

documentation of additional object properties.

Finally, in image processing workflows quite often the necessity arises to save intermediate

and final analysis results in an appropriate way that in best case also offers the possibility to

reinitiate the processing pipeline from that data again. MiToBo meets such requirements by

enhancing its own data types with easy ways to read and write data objects from and to files

based on XML representations and XML beans.

We will now discuss the different features and motivations of MiToBo data types in more

detail. MiToBo’s data type base class ’MTBData’ and its features will be outlined in the following

section. The subsequent section discusses XML input and output schemes for some data types

and explains how the concepts can be implemented for new data types. The last section of this

chapter will give a brief overview of MTBImage and its subclasses, probably the most basic but

also most important data types of MiToBo.

10.1 MiToBo’s data type definition and object properties

MiToBo allows to represent image processing pipelines as graph data structures, i.e. history

graphs. In particular, for each data object being the result of an image analysis process composed

of a series of data manipulations by MiToBo operators, the history graph allows to backtrace

each single intermediate processing step subsuming all interactions with other objects and the

parameter settings of the involved operators. While these data, together with the overall struc-

ture of the graph, already draw a detailed picture of the process pipeline, sometimes extended

information about manipulated and generated data objects, i.e. input and output objects of the

operators, are of interest that rise above the default data, like name, object class and package.

MiToBo defines the data type super class ’MTBData’ to support adding specific information

to input and output objects of operators. The class mainly offers the concept of data type

properties to data types derived from this class, allowing programmers to further characterize

objects in the processing history and also in general. Properties of operator inputs and outputs

are embedded in the history graph representation. Each time a data object passes an output

port, i.e. is taken out of an operator, the properties will be associated with the corresponding

data port node in the graph. When later on viewing the graph with chipory, the properties can

then be displayed as additional information of the corresponding ports.

A property is basically given as a pair of key and value and is supposed to specify object

characteristics. For example in case of the MiToBo image data types properties subsume infor-

mation like image and pixel sizes in all dimensions and the units of the axes. Examplary key

value pairs are shown in Table 10.1.
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Property Value

location ”/home/user/images/microscope.tif”

StepsizeX ”1”

StepsizeZ ”0.5”

UnitX ”cm”

. . . . . .

Table 10.1: Examplary properties and its values for an object of type MTBImage.

For setting and getting object properties ’MTBData’ defines two methods:

• public void setProperty( String key, Object obj )

allows to set a property named ’key’ to the string representation of ’obj’

• public String getProperty( String key )

returns the string describing the value of the property named ’key’

Internally the properties are stored in a hashtable of the Java type ’Hashtable<String,

String>’ to be found in the package java.util. Accordingly, keys and values are represented

as strings. Nevertheless, for convenience an arbitrary object can be handed over to the set

routine as shown above. It is automatically converted to a string via its toString() method

that consequently should return an informative description of the object at hand.

The programmer of a new MiToBo data type is in general allowed to choose arbitrary names

for the object properties without any restrictions, apart from one exception. There is one prop-

erty predefined for all MiToBo data types which is the property denoted ’location’. The location

of a data object defines the place of origin where the data object is coming from. This can be

the place where it is physically stored, i.e. the name of a file on disk or an URL, or it can point

to a virtual location if the object was generated by an operator in the course of the processing

pipeline. Note that although this property is by default attached to all data types extending

’MTBData’, it is, however, only set automatically for MiToBo images. For other data types set-

ting the location to proper values remains to the responsibility of the programmer of the specific

data type. To set and read the location of an object methods are available:

• public void setLocation( String location )

sets the object location to the given string

• public String getLocation()

returns the current location of the object

Note that there are no automatic checks to ensure that property names are unique. Thus, if

the setProperty method is called on a property which is already defined its previous value will

be overwritten. This is particularly true for the property ’location’, so this key should never

be used by the programmer within another context than intended to omit confusion.
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10.2 Input and output using XML schemata

In most image analysis projects sooner or later the question appears how to save result data to

disk for later use and reference. One common way for saving data to disk in a generic form is to

use XML representations. MiToBo supports this kind of representation, i.e. provides methods for

its data types to save objects to XML files and later on read them again from the corresponding

files. Of course, there are plenty of ways to generate XML files starting from plain text-based

output, going further to the direct use of XML document generators and parsers, and ending

up with high-level interfaces and libraries like XMLBeans1 for Java.

In MiToBo we suggest to use XMLBeans as they disengage the programmer from cumber-

some tasks like invoking parsers on her/ his own and subsequently analyzing resulting XML

documents. In short, using XMLBeans to load and save data objects requires to generate an

XML schema definiton for the data type which specifies its internal structure, in particular its

member variables. Once the schema is available corresponding XML wrapper classes can be gen-

erated using the org.apache.xmlbeans.impl.tool.SchemaCompiler included in XMLBeans,

i.e. in the archive xmlbean.jar. The wrapper classes then can be used within the MiToBo data

type classes to implement well-arranged I/O routines.

MiToBo already includes XML schemata definitions and wrapper classes for some basic data

types. We will outline below how XML schemata can easily be defined for new data types, how

the corresponding Java wrapper classes can be generated and how they can be used in operators

and plugins.

10.2.1 Basics of MiToBo and XMLBeans

XML schemata and all other related definitions required to generate XML wrapper classes can

be found in the MiToBo archive in the directory ’$MITOBO/share/xmlschemata/mtbxml’. The

directory contains all data required to read and save MiToBo data types. Inside this directory

there are the following basic files:

• MTBXML.xsdconfig, which contains some basic namespace and other related defines

• MTBXML.xsd, which lists all MiToBo data types for which XML schemata are available (and

which you will have to edit if you define new data types and schemata on your own)

• MTBXMLBase.xsd, which defines some very basic data types like 2D points and other prim-

itives frequently used to compose more complex data types

All other files to be found there are schemata for MiToBo data types. They all have in

common that their filenames begin with ’MTBXML’ followed by the name of the MiToBo data type

1http://xmlbeans.apache.org/
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without the leading ’MTB’. E.g., for the data type ’MTBContour2DSet’, which is a container for a

set of contours, the corresponding schema would be termed ’MTBXMLContour2DSet.xsd’.

The basic procedure for generating new wrapper classes is the following one:

1. Generate an XML schema description in the directory

’$MITOBO/share/xmlschemata/mtbxml’.

2. Generate the source code and class files using the SchemaCompiler from XMLBeans and

build a jar archive to be linked to your data type code.

10.2.2 XML schema definitions

To define an XML schema for a data type it is necessary to specify the basic structure of the data

type in XML. We will discuss this on the example of the MiToBo data type MTBContour2DSet,

for which input and output routines based on XMLBeans are available. MTBContour2DSet is a

simple container for objects of type MTBContour2D. It basically consists of a list of contours, but

further defines a bounding box which may be interpreted as the region-of-interest in an image

where the contours of the set are located. A 2D contour itself is given by a set of 2D points and

a list of inner contours included in the given one (for more details have a look in the Javadocs

of ’mitobo.datatypes.MTBContour2D’ and ’mitobo.datatypes.MTBContour2DSet’).

In Figure 10.1 we first of all show the overall structure of the XML schema description

for the data type ’MTBContour2DSet’ from the file ’MTBXMLContour2DSet.xsd’ which we will

discuss in detail now. At the top of the file there is the header with basic declarations. The most

important one is the target namespace declaration. As long as you use the XML files in the

context of MiToBo the target namespace should always be set to

targetNamespace=‘‘http://informatik.unihalle.de/MiToBo xml’’

The target namespace amongst others specifies where the generated source files will be

placed. While this is obligatory, the next section in the XML file is optional. By this it is

possible to include XML schemata from other XML files, for example schemata for basic MiToBo

XML data types from the file ’MTBXMLBase.xsd’, as in this case. In this example we will use 2D

points from that file later on.

Once header and imports are declared the actual schema declarations remain to be added. In

this file there are three of them. At first we declare the schema of the XML data type for which the

file is actually created and which is ’MTBXMLContour2DSetType’ in this example. As a contour set

consists of multiple contour objects we further add the type ’MTBXMLContour2DType’, and as each

of these contours consists of a list of 2D points we also add the type ’MTBXMLPointVectorType’

to describe the point list. The latter two declarations could also be moved to separate files.

However, as they are only used in the context of the contour set so far, they reside in this file

for the sake of simplicity.
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<!-- header -->

<?xml version="1.0" encoding="UTF-8"?> <xs:schema

targetNamespace="http://informatik.unihalle.de/MiToBo_xml"

xmlns="http://informatik.unihalle.de/MiToBo_xml"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<!-- import basic XML types -->

<xs:import namespace="http://informatik.unihalle.de/MiToBo_xml"

schemaLocation="MTBXMLBase.xsd">

</xs:import>

<!-- definition of the XML type -->

<xs:complexType name="MTBXMLContour2DSetType">

<xs:sequence>

<xs:element name="xMin" type="xs:double"/>

<xs:element name="yMin" type="xs:double"/>

<xs:element name="xMax" type="xs:double"/>

<xs:element name="yMax" type="xs:double"/>

<xs:element name="contour" type="MTBXMLContour2DType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="MTBXMLContour2DType">

<xs:sequence>

<xs:element name="points" type="MTBXMLPointVectorType"

minOccurs="1" maxOccurs="1"/>

<xs:element name="inner" type="MTBXMLContour2DType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="MTBXMLPointVectorType">

<xs:sequence>

<xs:element name="point" type="MTBXMLPoint2DType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Figure 10.1: Example XML schema for the data type MTBContour2DSet.
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Structure of data type declarations. Each XML schema declaration consists of a tag with

name complexType located in the namespace xs which is further detailed with the attribute

name stating the actual name of the XML data type to be defined. Subsequently the actual

type definition follows which in this file is in all three cases an element of tag type sequence,

i.e. all data types are composed of a set of various objects. For example it is stated that

’MTBXMLContour2DSetType’ consists of a sequence of objects of type ’MTBXMLContour2DType’

from which we can have a minimum number of zero and a maximum number of ’unbounded’:

<xs:element name="contour" type="MTBXMLContour2DType"

minOccurs="0" maxOccurs="unbounded"/>

In addition the declaration contains four items of type xs:double that refer to the

bounding box of the contour set mentioned above. From the second declaration for the type

’MTBXMLContour2DType’ we can see that an object of that type consists on the one hand of a

set of points stored in a vector, i.e. which is of type MTBXMLPointVectorType, and on the other

hand of another set of contours forming its inner contours. Note that XML data types can be

defined in a recursive fashion like it is common for data types in other languages, too.

The final declaration within the file states that objects of type ’MTBXMLPointVectorType’

consist of a sequence of objects of type ’MTBXMLPoint2DType’. The XML schema declaration for

this type is not defined in the given file, but is imported from the file ’MTBXML.xsd’ as stated

above.

Generating Java sources and wrapper classes. Once the schema declaration is available,

source and class files have to be generated. To this end the schemata declarations need to be

added to the list in the file MTBXML.xsd which might for example look as follows:

At top of the file we have again a header for the schema declaration with some declarations

similar to the ones from the file in Fig. 10.1. Below some XML schemata files are imported,

e.g. the file MTBXMLContour2DSetType.xsd that was discussed above. In the lower part of the

file we find the final Java XML data type declarations for all XML schemata. The names declared

here yield the names for some of the Java classes to be generated from the schemata. The actual

generation is invoked by calling the XMLBeans SchemaCompiler as follows:

java -Xmx256m org.apache.xmlbeans.impl.tool.SchemaCompiler \

-out $MITOBO/intjars/mtbxml.jar \

-src $MITOBO/src/ MTBXML.xsd MTBXML.xsdconfig

When running the SchemaCompiler make sure that xbean.jar is in your Java classpath.

The option -out specifies the target output jar archive which per default should located in

$MITOBO/intjars/. The option -src denotes the root path to where the source files are copied.
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<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="http://informatik.unihalle.de/MiToBo_xml"

xmlns="http://informatik.unihalle.de/MiToBo_xml"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:import namespace="http://informatik.unihalle.de/MiToBo_xml"

schemaLocation="MTBXMLPolygon2DSet.xsd">

</xs:import>

<xs:import namespace="http://informatik.unihalle.de/MiToBo_xml"

schemaLocation="MTBXMLContour2DSet.xsd">

</xs:import>

<xs:element name="MTBXMLPolygon2DSet" type="MTBXMLPolygon2DSetType">

</xs:element>

<xs:element name="MTBXMLContour2DSet" type="MTBXMLContour2DSetType">

</xs:element>

</xs:schema>

Figure 10.2: Examplary contents of the file MTBXML.xsd.

Given this path and the target namespace as defined in the XML schemata files the sources will be

placed in $MITOBO/src/de/unihalle/informatik/MiToBo xml. Simultaneously, corresponding

class files will be generated and directly put into the given jar archive. Note that the source

code files are mainly helpful for API documentation and do not need to be edited or modified

in any way. The resulting jar archive is the one that you need to place in your classpath and

which contains the Java wrapper classes to be used for reading and writing the corresponding

data types.

In case of the example discussed above, for the schema declaration from file

MTBXMLContour2DSet.xsd the following Java classes will be generated:

• MTBXMLContour2DSetDocument.java

• MTBXMLContour2DSetType.java

• MTBXMLContour2DType.java

• MTBXMLPointVectorType.java

For each type declaration from the file a corresponding type class is generated. In addition, the

class in file MTBXMLContour2DSetDocument.java links the new data type definitions to Java

XML, i.e. implements parsers and other things related to the handling of XML documents.
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Using XML wrapper classes for data type I/O. The wrapper classes generated above

can be used to implement I/O routines for the corresponding MiToBo data type. In case of the

MTBContour2DSet type the write method based on the XML wrapper classes for example is

displayed in Figure 10.3

1 public void write(String filename) throws MTBException {
2 try {
3 BufferedWriter file =

4 new BufferedWriter(new FileWriter(filename + ”.xml”));

5 // generate XML documents

6 MTBXMLContour2DSetDocument xmlContourSetDocument =

7 MTBXMLContour2DSetDocument.Factory.newInstance();

8 MTBXMLContour2DSetType xmlContourSet =

9 xmlContourSetDocument.addNewMTBXMLContour2DSet();

10

11 // transfer the contours to XML

12 MTBXMLContour2DType [] cList=

13 new MTBXMLContour2DType[this.contourSet.size()];

14 for (int p = 0; p < this.contourSet.size (); p++) {
15 MTBContour2D contour = this.contourSet.elementAt(p);

16 cList [p]= this.getContour2DAsXml(contour, null);

17 }
18 xmlContourSet.setContoursArray(cList);

19 xmlContourSet.setXMin(xMin);

20 xmlContourSet.setYMin(yMin);

21 xmlContourSet.setXMax(xMax);

22 xmlContourSet.setYMax(yMax);

23

24 // write the xml file

25 file .write(xmlContourSetDocument.toString());

26 file . close ();

27 } catch (Exception e) {
28 System.err.println(”Exception” + e);

29 }
30 // write processing history

31 writeHistory(filename);

32 }

Figure 10.3: XML wrapper class based write method for MTBContour2DSet

At first an XML document corresponding to the data type ’MTBContour2DSet’ needs to be

instantiated together with an object of the related XML data type ’MTBXMLContour2DSetType’.

Subsequently the different ingredients of a contour set are transferred to XML which are in

detail all contours and the coordinates of the bounding box. Each single contour is explic-
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itly translated to XML which in this case is done by the helper function getContour2DAsXml

to be found in the same class. Its basic definition is shown in Figure 10.4. Initially an ob-

1 public MTBXMLContour2DType getContour2DAsXml(MTBContour2D contour,

2 MTBXMLContour2DType xmlC) {
3

4 MTBXMLContour2DType xmlContour;

5

6 // instantiate contour

7 ...

8 // transfer list of contour points

9 MTBXMLPointVectorType xmlPlist=

10 MTBXMLPointVectorType.Factory.newInstance();

11 Vector<java.awt.geom.Point2D.Double> points = contour.getPoints();

12 for (int i = 0; i < points. size (); i++) {
13 MTBXMLPoint2DDoubleType xmlPoint = xmlPlist.addNewPoint();

14 xmlPoint.setX((int)points.elementAt(i).getX());

15 xmlPoint.setY((int)points.elementAt(i).getY());

16 }
17 xmlContour.setPoints(xmlPlist);

18

19 // inner contours

20 Vector<MTBContour2D> innerContours= contour.getAllInner();

21 MTBXMLContour2DType [] inList=

22 new MTBXMLContour2DType[innerContours.size()];

23 for (int i = 0; i< innerContours.size(); ++i) {
24 inList [ i]= this.getContour2DAsXml(innerContours.get(i),null);

25 }
26 xmlContour.setInnerArray(inList);

27 return xmlContour;

28 }

Figure 10.4: Example method for translating MTBContour2D types into XML

ject of type ’MTBXMLPointVectorType’ is instantiated to which afterwards points of type

’MTBXMLPoint2DDoubleType’ are added. The coordinates of the single points are set accord-

ing to the coordinates of the contour points. In a second phase all inner contours are added to

the new XML object by calling the helper function recursively on all inner contours.

The read methods for the data type work similar and just the other way round. For details on

these methods and related helper methods please take a look into the javadoc API documentation

or directly in the source file src/de/unihalle/MiToBo/datatypes/MTBContour2DSet.java.
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Concluding remarks. All XML schemata are part of your MiToBo distribution, however,

related wrapper classes are not automatically compiled when calling standard MiToBo ant

tasks. Rather precompiled class files are supplied via the jar named mtbxml.jar to be found

in $MITOBO/intjars/. Accordingly, if you would like to permanently add new XML wrapper

classes for a certain data type to MiToBo you need to generate a new jar archive manually and

afterwards make sure that all users of your code replace the default version of the jar with your

release. Note that for the wrapper sources are not included in the MiToBo sources, however. The

API documentation for these classes is part of the MiToBo Javadocs.

10.3 MTBImage

MiToBo defines its own image classes, namely MTBImage and its subclasses, for the following

reasons:

• Extended pixel value precision to support all primitive numeric datatypes of Java

• Easy access to image pixel data, but also to properties like physical pixel size etc.

• Functionality for MiToBo’s operator concept, namely documentation of image properties

The image classes can be found in de.unihalle.informatik.MiToBo.datatypes.images.

This subsection about MTBImage is roughly divided into the following parts. At first, some

important details about the structure of MTBImage are given and which image types are available

in MiToBo. An overview of most common methods for creation and manipulation of MTBImages

follows. This subsection is closed by the description of MTBImage file IO and how it integrates

in MiToBo’s operator concept.

10.3.1 The ideas behind MTBImage

MTBImage was not developed to fully replace ImageJ’s ImagePlus, but rather to wrap the

ImagePlus objects if possible. The most convenient way to create a MTBImage from an existing

ImagePlus object is to simply specify the ImagePlus as input to the method public static

MTBImage.createMTBImage(ImagePlus img). The created MTBImage holds a reference to that

ImagePlus object and stores the image size as well as physical pixel size and units if available.

For fast pixel access, the MTBImage keeps direct references to the data array or arrays in case of

a (hyper-)stack.

When a MTBImage is created from an ImagePlus, that MTBImage must uniquely be associated

with the specified ImagePlus, as no new MTBImage is created, but the existing one is used. This

case occurs very often, e.g. when an image window is selected from the ImageJ GUI and used

as input to a MiToBo plugin. Therefore another reference is kept in the properties hash-table
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of the ImagePlus to the MTBImage, which was initially created using the ImagePlus. When an

ImagePlus with a reference to an existing MTBImage is passed to createMTBImage(ImagePlus

img), the existing MTBImage is simply returned.

Another aspect of MTBImage is to think of an ImagePlus as a 5-dimensional image, which is

the highest possible dimensionality of an image in ImageJ (hyperstack). To provide easy access

to higher dimensional image data, methods exist to access data in 5D hyperstacks, 3D stacks

and 2D images, which will be discussed in more detail in section 10.3.3.

MTBImage objects are designed in a similar way as ImageJ’s ImageProcessor. You usually ref-

erence them by the abstract type MTBImage, while one of its subclasses is actually instantiated.

10.3.2 Subclasses of MTBImage: Image types

One reason to develop a new image type was the limitation of ImageJ images to 32-Bit pixel value

precision. The need for a 64-Bit precision floating-point image type to store most accurate results

was obvious. Also the lack of a (true) 32-Bit integer type in ImageJ can bear some problems,

e.g. when consecutive labels are given to image regions especially in higher dimensional data.

The instantiable subclasses are comprised of the name MTBImage and the Java data type of the

pixel values. The following list shows the available image types in MiToBo:

• MTBImageByte for byte-type pixel values (unsigned as in ImageJ)

• MTBImageShort for short-type pixel values (unsigned as in ImageJ)

• MTBImageInt for int-type pixel values

• MTBImageFloat for float-type pixel values

• MTBImageDouble for double-type pixel values

• MTBImageRGB for three byte-type pixel values, one for each color channel red, green and

blue (unsigned)

These image types share the same interface, but are differentiated by MiToBo image types

that have a corresponding ImageJ type and thus simply wrap the ImagePlus, and those types

that do not have a corresponding ImageJ type. If only MTBImage s are used, there is no difference

in the interface. If ImagePlus has to be consulted (e.g. using ImageJ functions or displaying

images), please keep in mind the difference described in the following two paragraphs.

MTBImages with corresponding ImageJ types. If values are changed of an

MTBImage that simply wraps the corresponding ImagePlus, the changes are applied to that

ImagePlus directly, because MTBImage and ImagePlus share the same data arrays. Table 10.2

lists the subtypes of MTBImage and their corresponding ImageJ image types.
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MTBImage subtype ImageProcessor of corresponding ImagePlus

MTBImageByte ByteProcessor

MTBImageShort ShortProcessor

MTBImageFloat FloatProcessor

Table 10.2: MTBImage types with corresponding ImageJ types.

MTBImages without corresponding ImageJ types. MTBImages which cannot be rep-

resented by corresponding ImageJ types keep their own data arrays and are not linked to

an ImagePlus object at creation. Images of such data types cannot be instantiated by the

createMTBImage(ImagePlus img) method. These images are usually constructed from scratch

by specifying datatype and image size, or by conversion from another MTBImage to that datatype.

Nevertheless an ImagePlus object is often needed, usually for visualization. MTBImage provides

the function getImagePlus() to obtain an ImagePlus. The ImagePlus created is firmly as-

sociated to the MTBImage. In the case of the data types discussed in this paragraph, a new

ImagePlus of the ImageJ type that is supposed to provide the least loss of information is cre-

ated. By the way, as MTBImage provides its own show() and updateAndRepaint() methods

which use the getImagePlus method, you won’t have to explicitly get the ImagePlus object for

pure displaying purpose.

Always keep in mind, that a second image data object is kept in memory, once

getImagePlus() or the displaying methods are called!

Table 10.3 describes the MTBImage types that do not have a corresponding ImageJ type and

explains, how they are mapped to ImagePlus.

MTBImage subtype ImageProcessor of created ImagePlus Pixel value conversion

MTBImageInt FloatProcessor cast from int to float

MTBImageDouble FloatProcessor cast from double to float

MTBImageRGB ColorProcessor lossless encoding of three

byte values to ImageJ’s int

color representation

Table 10.3: MTBImage types without corresponding ImageJ types.

10.3.3 Construction, data access and other useful functions of MTBImage

This subsection gives a short overview of the functions of MTBImage that are widely used when

working with MiToBo. A full description can be found in the Javadoc API of MiToBo.

At first, methods to create new MTBImages are presented. As there are no visible constructors,

you have to use the following static factory functions:
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• public static MTBImage createMTBImage(ImagePlus img)

creates a new MTBImage of the correct subtype, which is uniquely linked to the ImagePlus

• public static MTBImage createMTBImage(int sizeX, int sizeY, int sizeZ, int

sizeT, int sizeC, MTBImageType type)

creates a new MTBImage from scratch given the size and the datatype of the new image

The following methods can be used to create MTBImages from existing ones:

• MTBImage duplicate()

duplicates a MTBImage.

• MTBImage convertType(MTBImageType type, boolean scaleDown)

creates a MTBImage of different datatype from the values of the source image

There are more methods (e.g. to create MTBImages only from part of an image) and all these

methods also exist with one more argument to specify, an MTBOperator object. For the sake of

briefness, only the versions without that argument and only the most commonly used methods

are presented here. Please refer to the API for the other methods.

Methods for image pixel data access are declared by the MTBImageManipulator interface,

which is implemented by MTBImage. The behavior of data access methods is similar to Im-

ageJ’s getPixel and putPixel methods, which return or take an int to cover 8-Bit to 32-Bit

values. MTBImage provides the same methods called getValueInt and setValueInt, with the

only difference, that ints are casted and not reinterpreted in case of underlying floating point

datatypes. Keep in mind, that like ImageJ methods byte types return and take values in the

range [0,255] and short types in the range [0,65535]. To cover floating point types additional

methods exist, which return or take double values. These methods are called getValueDouble

and putValueDouble, which are the safest way to go with, if you cannot be sure which kind of

images have to be processed.

A word to (hyper-)stacks: ImageJ holds an array of 2D images, no matter if the image is three-,

four- or five-dimensional. 2D images (called slices in the following) in this array (called stack)

are referenced by 1 to N , where N is the number of slices. MTBImage uses indexing that is known

to every programmer, starting from 0 to (N − 1).

• int getValueInt(int x, int y, int z, int t, int c)

returns the pixel value at (x,y,z,t,c) as int

• void putValueInt(int x, int y, int z, int t, int c, int value)

sets the pixel value at (x,y,z,t,c) using an int as input value

• double getValueDouble(int x, int y, int z, int t, int c)

returns the pixel value at (x,y,z,t,c) as double
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• void putValueDouble(int x, int y, int z, int t, int c, double value)

sets the pixel value at (x,y,z,t,c) using a double as input value

MTBImageRGB can be modified in the same way as color images in ImageJ, by encoding

the color values to an int and then pass that int to the putValueInt/Double method. But

MTBImageRGB further provides methods to get and set values of the different color channels sep-

arately, or even get and work on the MTBImageBytes that represent the separate color channels.

For work with 2D images or 3D stacks, there are equivalent methods that take only 2D (x,y)

or 3D (x,y,z) coordinates. You can also use these methods to access certain slices (2D images) or

z-stacks (3D images) of a (hyper-)stack. Therefore you can set internal variables of MTBImage to

specify a “current” slice or z-stack with the following functions:

• void setActualSliceCoords(int z, int t, int c)

sets the coordinates of the “current” slice

• void setActualSliceIndex(int idx)

sets the index of the “current”, meaning the index in the array of slices

• void setActualZStackCoords(int t, int c)

sets the coordinates of the “current” z-stack (leaves “current” slice index unchanged)

The image data should be accessed by the above methods to develop algorithms for generic

image types. The data access methods are kept as fast as possible (e.g. no further function calls),

but be aware that for this reason the specified coordinates are not checked. This means that

running out of the data arrays’ bounds will cause an ArrayOutOfBoundsException that is not

forced to be caught.

For fast processing of higher dimensional images, you should also be aware of how to iterate

through the pixels. The usual ordering in ImagePlus hyperstacks is XYCZT, while MiToBo’s

interface order is XYZTC. You should therefore iterate over the pixels of a MTBImage as shown

in the example below:

MTBImage img = MTBImage.createMTBImage(100, 100, 100, 100, 100,

MTBImageType.MTB BYTE);

for (int t = 0; t < img.getSizeT(); t++)

for (int z = 0; z < img.getSizeZ(); z++)

for (int c = 0; c < img.getSizeC(); c++)

for (int y = 0; y < img.getSizeY(); y++)

for (int x = 0; x < img.getSizeX(); x++)

img.putValueInt(x,y,z,t,c,255);

If slicewise processing is possible, you can simply iterate over all slices, which produces less

lines of code and is the fastest way to access all pixels:
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MTBImage img = MTBImage.createMTBImage(100, 100, 100, 100, 100,

MTBImageType.MTB BYTE);

for (int i = 0; i < img.getSizeStack(); i++) {
img.setActualSliceIndex(i);

for (int y = 0; y < img.getSizeY(); y++)

for (int x = 0; x < img.getSizeX(); x++)

img.putValueInt(x,y,255);

}

10.3.4 MTBImage IO and the MiToBo operator concept

MTBImage extends the MTBData class and therefore fully integrates in MiToBo’s operator concept.

A difference to other MTBData types is the file input and output. MTBImage objects can be written

to and read from disk using the ImageWriterMTB and ImageReaderMTB operators, which can be

found in the package de.unihalle.informatik.MiToBo.io.files.

The output is comprised of two separate files: one image file in any supported format, and a file

(*.ald) that contains the image’s processing history (see chapter 3). This history file – if present

– is automatically loaded when the image is opened using MiToBo’s ImageReaderMTB operator.

The processing history files can be examined using chipory (Appendix A).

MiToBo uses the Bio-Formats Library (http://www.loci.wisc.edu/software/bio-formats)

and thus allows reading and writing of files supported by Bio-Formats. Bio-Formats is a so-

phisticated image IO library targeted at the various file formats in bio-medical imaging. One

great feature is the support of formats that satisfy the Open Microscopy Environment (OME)

standard (http://www.openmicroscopy.org).
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Chapter 11

Tools and helper classes

MiToBo provides certain classes not directly related to image processing, however, useful for

doing things like time measurements or plugin configuration. Such tools can usually be found in

the package mitobo.tools.system.

11.1 Plugin Configuration

For user specific configuration of plugins MiToBo supports environment variables and JVM

properties as well as ImageJ preferences (Chap. 5). For accessing environment variables and

properties/preferences MiToBo provides the class mitobo.tools.system.EnvironmentConfig

which supports easy access to variables. It basically defines the following methods:

• public static void

setImageJPref(String plugin, String envVar, String val)

This method allows to set a preference in the ImageJ configuration file. It is saved to the

user specific ImageJ configuration file (usually /̃.imagej/Prefs.txt). Note that the saving

requires the ImageJ gui to be used as otherwise related methods for preference saving are

not called.

• public static String

getConfigValue(String plugin, String envVariable)

With this method environment configurations can be accessed.

The second method follows the formerly defined priority ordering of the different configuration

options, i.e. first looks for an environment variable with the given name, then checks for JVM

properties and third for ImageJ preferences. If not all options are to be checked in this order,

the following methods can be used alternatively:
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• public static String

getEnvVarValue(String plugin, String envVariable)

This method allows to directly read environment variables.

• public static String

getJVMPropValue(String plugin, String envVariable)

This method allows to directly read JVM properties.

• public static String

getImageJPropValue(String plugin, String envVariable)

This method allows to directly read ImageJ preferences.

Note that in all cases the prefix ’mitobo.’ for properties and preferences or ’MITOBO ’ for

environment variables, respectively, is internally added to the variable and property names. The

programmer usually does not need to pay attention on this feature, it should solely be kept in

mind by a user when setting values for properties and environment variables.
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Appendix A

Graph-Visualization: chipory

Processing histories are stored in XML format using graphml with some Alida specific extensions

as mentioned in Chapter 7. To display histories we extended Chisio1 to handle the Alida specific

extensions yielding chipory.

A.1 Installation and invocation of chipory

chipory is not strictly part of Alida but supplied as an add-on at the Alida website2. A

single zip-file is provided for running chipory on Linux systems with 32- or 64-bit as well as

on Windows system. The only difference is one system dependent jar-file as detailed in the

installation instructions provided in the zip archive. Essentially all system independent and

one appropriate system dependent jar-file have to be included into the CLASSPATH. Invoke

chipory, e.g., by

java org.gvt.ChisioMain [directory]

The optional directory supplied as an argument denotes the path where chipory starts to

browse when reading or writing files. If omitted the current working directory is used.

A.2 Using chipory

chipory is based on Chisio, a free editing and layout tool for compound or hierarchically struc-

tured graphs. In chipory all editing functionality was conserved, however, is not required for

inspecting a processing history in virtually all cases. Chisio offers several automatic layout

algorithms where chipory chooses the Sugiyama as default as this is most adequate for the

hierarchical graph structure of processing histories. In the following we explain a tiny part of

1http://sourceforge.net/projects/chisio
2http://www.informatik.uni-halle.de/alida

56

http://sourceforge.net/projects/chisio
http://www.informatik.uni-halle.de/alida


Figure A.1: Example processing graph.

Chisio’s functionality and the extensions supplied by chipory. For more details on Chisio see

the User’s manual of Chisio which is included in the chipory package and also easily found in

the web.

In Figure A.1 an example processing graph extracted from an image analysis procedure

implemented in MiToBo is shown. As already described instances of operators are depicted as

rectangles, input and output ports as ellipses, and data ports as triangles. All three types of

elements of a processing history are implemented as Chisio nodes. A node may be selected with

a left or right mouse click. A selected node may be dragged with the left mouse button pressed to

manually adjust the layout. The size of a node representing operators is automatically adjusted

to fit all enclosed ports and nested operators.

The name of an operator is displayed in a colored area at the bottom of its rectangle. If a

operator node is uncollapsed it is shown in blue, if it is collapsed it is of dark red. This is shown
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Figure A.2: Screen shot of chipory for a part of the same processing history as shown in Fig: A.1, however

the collapsed instance of the ReadImage has been uncollapsed.

in Fig. 3.1 where the operator DetectNuclei has been collapsed. A selected operator node may

be collapsed or uncollapsed by a left double mouse click. Collapsing makes all enclosed operator

and data nodes invisible, thus, only the ports of a collapsed operator are shown. If the node is

uncollapsed later on enclosed nodes are made recursively visible again, until a collapsed node

is encountered. Uncollapsing additionally invokes the automatic layout algorithm, hence, any

manual layout adjustments applied before are lost.

If we uncollapse the right instance of the operator ReadImage as shown in Fig. A.2 we find

that the source of the port in for the operator MTB GammaCorrection was read from the file

nuc.pgm which has no prior history. The later fact is visually marked by the grey shading of the

corresponding triangular data port. On the other hand, nuc-corrected.pgm which is passed to

CellSegmentation via the nucChannel port has a processing history associated which was read

from the .ald-file accompanying the image data in nuc-corrected.pgm. This is indicated by

the orange color of the data port.

Input and output ports are generally displayed with light and dark green ellipses, re-

spectively. The single exception is the port for which the processing history was constructed

which is depicted in yellow. In our example this is the output port resultImg of the operator

CellSegmentation.

More details for operators and ports may be inspected using the Object properties of Chisio’s

nodes. These are displayed in a separate window which for the selected node can be popped up

using the context menu. The context menu is activated by a right mouse click. Alternatively the

object properties window can be popped up by a double mouse click.
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Figure A.3: Screen shot of chipory with details for the operator CellSegmentation and the output port

resultImage of the same operator.
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Information displayed includes

• name of the operator or port

• type of the node, e.g. opNode for operators

• for operators the parameter values at time of invocation

• for input and output port the java class of the object as it passed into our along with the

explanatory text of this port

• for output ports the properties of the object valid when pass out of the operator if it is of

type ALDData.

In Fig. A.3 this is shown for the operator CellSegmentation and the output port resultImage

of the same operator.
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Appendix B

MiToBo-Resources:

Files and Directory Contents

Once the MiToBo source archive was extracted to a directory of your choise which we denote

with ’$MITOBO’ there you will find the following directories and files:

• $MITOBO/.

contains license and ant build files

• $MITOBO/etc

contains configuration files

• $MITOBO/share/README.mitobo-ant

explains how to use ant with MiToBo

• $MITOBO/share/xmlschemata/mtbxml

contains all files related to MiToBo’s XML extensions

• $MITOBO/share/logo

contains some nice pictures

• $MITOBO/share/scripts

contains shell scripts for running MiToBo

• $MITOBO/src/de/unihalle/informatik/Alida/

contains the source files and directories of Alida

• $MITOBO/src/de/unihalle/informatik/MiToBo/

contains the source files and directories of MiToBo

• $MITOBO/src/plugins

contains the sources of all MiToBo plugins
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• $MITOBO/src/cmdTools

contains sources of MiToBo commandline tools
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