|
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.unihalle.informatik.MiToBo.tracking.multitarget.distributions.abstracts.AbstractMultiStateTransitionDistribution<T>
de.unihalle.informatik.MiToBo.tracking.multitarget.distributions.abstracts.AbstractMultiStateTransitionDistributionIndep<T>
de.unihalle.informatik.MiToBo.tracking.multitarget.distributions.impl.MultiStateLinTransDistributionIndepGaussians<T>
T
- class type of the multi-states' discrete variablespublic class MultiStateLinTransDistributionIndepGaussians<T extends Copyable<?>>
A simple multi state-transition density, which assumes independence of the single states and multivariate Gaussian process noise. Further, the noise covariance matrices are identical for each state.
Field Summary | |
---|---|
protected Jama.Matrix[] |
F
state-transition matrix |
protected GaussianDistribution[] |
gaussian
multivariate gaussian density object for evaluation |
protected Jama.Matrix[] |
Q
Gaussian process noise covariance matrix |
Fields inherited from class de.unihalle.informatik.MiToBo.tracking.multitarget.distributions.abstracts.AbstractMultiStateTransitionDistribution |
---|
condX, factoryX |
Constructor Summary | |
---|---|
MultiStateLinTransDistributionIndepGaussians(java.util.Random rand,
Jama.Matrix[] F,
Jama.Matrix[] Q,
AbstractMultiState<T> X,
AbstractMultiStateFactory<T> factoryX)
|
|
MultiStateLinTransDistributionIndepGaussians(java.util.Random rand,
Jama.Matrix[] F,
Jama.Matrix[] Q,
MultiStateDistributionIndepGaussians<T> distribX,
AbstractMultiStateFactory<T> factoryX)
|
|
MultiStateLinTransDistributionIndepGaussians(java.util.Random rand,
Jama.Matrix F,
Jama.Matrix Q,
AbstractMultiState<T> X,
AbstractMultiStateFactory<T> factoryX)
|
|
MultiStateLinTransDistributionIndepGaussians(java.util.Random rand,
Jama.Matrix F,
Jama.Matrix Q,
MultiStateDistributionIndepGaussians<T> distribX,
AbstractMultiStateFactory<T> factoryX)
|
Method Summary | |
---|---|
AbstractMultiState<T> |
drawSample()
Generate a new sample from this density. |
AbstractMultiState<T> |
drawSample(int i,
AbstractMultiState<T> X)
Generate a new sample from this density by drawing only one independent variable for a given realization x. |
Jama.Matrix[] |
getCovariance()
|
AbstractMultiState<T> |
getMean()
|
Jama.Matrix[] |
getTransitionMatrices()
|
double |
p(AbstractMultiState<T> X)
Evaluate p(X) at location x. |
double |
p(AbstractMultiState<T> X,
int i)
Evaluate p_i(X) at x_i |
void |
setCondition(AbstractMultiState<T> X)
Set the conditional variable |
Methods inherited from class de.unihalle.informatik.MiToBo.tracking.multitarget.distributions.abstracts.AbstractMultiStateTransitionDistribution |
---|
getCondition |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
protected Jama.Matrix[] F
protected GaussianDistribution[] gaussian
protected Jama.Matrix[] Q
Constructor Detail |
---|
public MultiStateLinTransDistributionIndepGaussians(java.util.Random rand, Jama.Matrix[] F, Jama.Matrix[] Q, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX) throws java.lang.IllegalArgumentException
F
- state-transition linear transform matricesQ
- Gaussian process noise covariance matricesX
- condition statefactoryX
- factory to determine multi-target state layout
java.lang.IllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(java.util.Random rand, Jama.Matrix[] F, Jama.Matrix[] Q, MultiStateDistributionIndepGaussians<T> distribX, AbstractMultiStateFactory<T> factoryX) throws java.lang.IllegalArgumentException
F
- state-transition linear transform matricesQ
- Gaussian process noise covariance matricesX
- condition statefactoryX
- factory to determine multi-target state layout
java.lang.IllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(java.util.Random rand, Jama.Matrix F, Jama.Matrix Q, AbstractMultiState<T> X, AbstractMultiStateFactory<T> factoryX) throws java.lang.IllegalArgumentException
F
- state-transition linear transform matrixQ
- Gaussian process noise covariance matrixX
- condition statefactoryX
- factory to determine multi-target state layout
java.lang.IllegalArgumentException
- if any dimensions of the input objects do not matchpublic MultiStateLinTransDistributionIndepGaussians(java.util.Random rand, Jama.Matrix F, Jama.Matrix Q, MultiStateDistributionIndepGaussians<T> distribX, AbstractMultiStateFactory<T> factoryX) throws java.lang.IllegalArgumentException
F
- state-transition linear transform matrixQ
- Gaussian process noise covariance matrixX
- condition statefactoryX
- factory to determine multi-target state layout
java.lang.IllegalArgumentException
- if any dimensions of the input objects do not matchMethod Detail |
---|
public AbstractMultiState<T> drawSample()
SamplingDistribution
drawSample
in interface SamplingDistribution<AbstractMultiState<T extends Copyable<?>>>
drawSample
in class AbstractMultiStateTransitionDistributionIndep<T extends Copyable<?>>
public AbstractMultiState<T> drawSample(int i, AbstractMultiState<T> X)
IndependentSamplingDistribution
drawSample
in interface IndependentSamplingDistribution<AbstractMultiState<T extends Copyable<?>>>
drawSample
in class AbstractMultiStateTransitionDistributionIndep<T extends Copyable<?>>
i
- sample a new realization of the i-th element in xX
- realization of a random vector or finite set
public Jama.Matrix[] getCovariance()
getCovariance
in interface SecondOrderCentralMoment<Jama.Matrix[]>
public AbstractMultiState<T> getMean()
getMean
in interface FirstOrderMoment<AbstractMultiState<T extends Copyable<?>>>
public Jama.Matrix[] getTransitionMatrices()
public double p(AbstractMultiState<T> X)
EvaluatableDistribution
p
in interface EvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
X
- realization of random variable X
public double p(AbstractMultiState<T> X, int i)
IndependentlyEvaluatableDistribution
p
in interface IndependentlyEvaluatableDistribution<AbstractMultiState<T extends Copyable<?>>>
X
- realization of random variable Xi
- i-th element in x
public void setCondition(AbstractMultiState<T> X)
ConditionalDistribution
setCondition
in interface ConditionalDistribution<AbstractMultiState<T extends Copyable<?>>>
setCondition
in class AbstractMultiStateTransitionDistribution<T extends Copyable<?>>
X
- conditional variable
|
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |